首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地球物理   10篇
地质学   14篇
海洋学   1篇
  2016年   1篇
  2012年   1篇
  2010年   1篇
  2009年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
排序方式: 共有25条查询结果,搜索用时 234 毫秒
11.
Future aquatic nutrient limitations   总被引:8,自引:0,他引:8  
Nutrient limitation of phytoplankton growth in aquatic systems is moving towards a higher incidence of P and Si limitation as a result of increased nitrogen loading, a N:P fertilizer use of 26:1 (molar basis), population growth, and relatively stable silicate loading. This result will likely alter phytoplankton community composition, and may compromise diatom-->zooplankton-->fish food webs.  相似文献   
12.
The Mississippi River system ranks among the world's top 10 rivers in freshwater and sediment inputs to the coastal ocean. The river contributes 90% of the freshwater loading to the Gulf of Mexico, and terminates amidst one of the United States' most productive fisheries regions and the location of the largest zone of hypoxia, in the western Atlantic Ocean. Significant increases in riverine nutrient concentrations and loadings of nitrate and phosphorus and decreases in silicate have occurred this century, and have accelerated since 1950. Consequently, major alterations have occurred in the probable nutrient limitation and overall stoichiometric nutrient balance in the adjacent continental shelf system. Changes in the nutrient balances and reduction in riverine silica loading to, the continental shelf appear to have led to phytoplankton species shifts offshore and to an increase in primary production. The phytoplankton community response, as indicated by long-term changes in biological uptake of silicate and accumulation of biologically bound silica in sediments, has shown how the system has responded to changes in riverine nutrient loadings. Indeed, the accumulation of biologically bound silica in sediments beneath the Mississippi River plume increased during the past two decades, presumably in response to, increased nitrogen loading. The duration, size, and severity of hypoxia has probably increased as a consequence of the increased primary production. Management alternatives directed at water pollution issues within the Mississippi River watershed may have unintended and contrasting impacts on the coastal waters of the northern Gulf of Mexico.  相似文献   
13.
The development of oil and gas recovery offshore of the Mississippi River delta began in shallow water in the 1950s, expanded into deeper waters, and peaked in the 1990s. This area of the outer continental shelf (OCS) is the historical and present location of >90% of all US OCS oil and gas production and reserves. The juxtaposition of its 4000 producing platforms, recovering $10 billion yr(-1) of oil, gas and produced water in the same area where about 28% of the US fisheries catch (by weight) is made and near 40% of the US coastal wetlands, makes this an area worth monitoring for regional pollutant loading. This loading may come from several sources, including sources related to OCS development, but also from the Mississippi River watershed. In this context, any contaminant loading on this shelf may be neither detectable nor significant against a background of climatic or biological variability. We examined the sedimentary record for indicators of industrial byproducts from OCS oil and gas development and of industrial products entering via the Mississippi River, primarily using vanadium (V) and barium (Ba) concentrations normalized for aluminum (Al). Barium is primarily used in drilling muds in the form of barite, whereas V is an important strengthening component of metal alloys, including steel. The fluctuations in the accumulation of Ba, but not V, were coincidental with the presumed use of barite. The fluctuations in V concentration in the sediments were coincidental with the national consumption of V. Copper (Cu), cadmium (Cd) and zinc (Zn) concentrations in sediments fluctuate coincidentally with V, not Ba, thus indicating that the dominant source of these trace metals in offshore sediments were derived from riverine sources, and were not primarily from in situ industrial processes releasing them on the shelf. This is not to suggest that local site-specific contamination is not a significant management or health concern. The low oxygen (hypoxia; < or = 2 mg l(-1)) zone that consistently covers much of this continental shelf's bottom layer in summer is attributed to nitrate loading from the Mississippi River. Increased nitrogen loading from river to shelf stimulates diatom production whose loading to the bottom layer and subsequent metabolism results in oxygen being depleted faster than it is replaced. In the last two decades there has been an increased accumulation of organic matter in sediments near the mouth of the Mississippi River. This coupling between river water, surface water and bottom water has recently expanded westward of the Atchafalaya River delta towards the Texas coast. The accumulation of biogenic silica (BSi) and carbon in dated sediments is coincidental with variations in riverine nitrate flux, but not with either V or Ba accumulation rates. These analyses indicate that both OCS development and riverine sources exert strong influences on the sediment constituents offshore, and that these influences may be independent of one another.  相似文献   
14.
Dead zone dilemma   总被引:2,自引:0,他引:2  
  相似文献   
15.
We introduce the Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies using a data set intended for inference on the effects of bottom-water hypoxia on macrobenthic communities in the northern Gulf of Mexico off the coast of Louisiana, USA. We illustrate (1) the process of developing a model, (2) the use of the hierarchical model results for statistical inference through innovative graphical presentation, and (3) a comparison to the conventional linear modeling approach (ANOVA). Our results indicate that the Bayesian hierarchical approach is better able to detect a “treatment” effect than classical ANOVA while avoiding several arbitrary assumptions necessary for linear models, and is also more easily interpreted when presented graphically. These results suggest that the hierarchical modeling approach is a better alternative than conventional linear models and should be considered for the analysis of observational field data from marine systems.  相似文献   
16.
Produced water is a high salinity by-product resulting from oil and gas production. Disposal methods include surface water discharge. The current field method used to determine its fate in estuarine systems involves extending a compass oriented transect (COT) from the point source discharge--a method designed for a uniformly dispersing effluent discharged into a uniform offshore environment that may be inappropriate for the hydrologic and geomorphologic complexities found in estuarine systems. Prior research established the viability of the salinity stratification transect (SST) method. Both COT and SST methods were used in a small open bay to determine which more accurately detected effluent dispersion. Determination was based on sediment contaminant indicators (SCIs), including interstitial salinity, hydrocarbons, metals, and radium concentrations. Additionally, SCIs were evaluated for their ability to serve as indicators of effluent dispersion. The data revealed that SST stations exhibited higher contaminant concentrations and that this approach was more accurate in tracking the produced water plume. The data also suggested that SCIs varied in their ability to serve as indicators. Good indicators included interstitial salinity, total targeted aromatic hydrocarbons substantiated with a modified fossil fuel pollution index value, certain metals, and radium-228.  相似文献   
17.
18.
An 18-year monitoring record (1978-1995) of dissolved oxygen within a region having hypoxia (dissolved oxygen less than 2 mgl(-1)) in the bottom layer was examined to describe seasonal and annual trends. The monitoring location was near or within a well-described summer hypoxic zone whose size has been up to 20,000 km(2). The monitoring data were used to hindcast the size of the hypoxic zone for before consistent shelfwide surveys started, and to predict it for 1989, when a complete shelfwide survey was not made. The concentration of total Kjeldahl nitrogen (TKN) in surface waters and concentration of bottom water oxygen were directly related, as anticipated if organic loading from surface to bottom was from in situ processes. The TKN data were used to develop a predictive relationship that suggested there was no substantial hypoxia before the 1970s, which was before nitrate flux from the Mississippi River to the Gulf of Mexico began to rise. The peak frequency in monthly hypoxic events is two to three months after both the spring maximum in discharge and nitrate loading of the Mississippi River. These results support the conclusion that persistent, large-sized summer hypoxia is a recently-developed phenomenon that began in the 1970s or early 1980s.  相似文献   
19.
Oxygen depletion is a seasonally dominant feature of the lower water column on the highly-stratified, riverine-influenced continental shelf of Louisiana. The areal extent of hypoxia (bottom waters ≤2 mg l?1 dissolved oxygen) in mid-summer may encompass up to 9,500 km2, from the Mississippi River delta to the upper Texas coast, with the spatial configuration of the zone varying interannually. We placed two continuously recording oxygen meters (Endeco 1184) within 1 m of the seabed in 20-m water depth at two locations 77 km apart where we previously documented midsummer bottom water hypoxia. The oxygen meters recorded considerably different oxygen conditions for a 4-mo deployment from mid-June through mid-October. At the station off Terrebonne Bay (C6A), bottom waters were severely depleted in dissolved oxygen and often anoxic for most of the record from mid-June through mid-August, and there were no strong diurnal or diel patterns. At the station 77 km to the east and closer to the Mississippi River delta (WD32E), hypoxia occurred for only 50% of the record, and there was a strong diurnal pattern in the oxygen time-series data. There was no statistically significant coherence between the oxygen time-series at the two stations. Coherence of the oxygen records with wind records was weak. The dominant coherence identified was between the diurnal peaks in the WD32E oxygen record and the bottom pressure record from a gauge located at the mouth of Terrebonne Bay, suggesting that the dissolved oxygen signal at WD32E was due principally to advection by tidal currents. Although the oxygen time-series were considerably different, they were consistent with the physical and biological processes that affect hypoxia on the Louisiana shelf. Differences in the time-series were most intimately tied to the topographic cross-shelf gradients in the two locations, that is, station C6A off Terrebonne Bay was in the middle of a broad, gradually sloping shelf and station WD32E in the Mississippi River Delta Bight was in an area with a steeper cross-shelf depth gradient and likely situated near the edge of a hypoxic water mass that was tidally advected across the study site.  相似文献   
20.
A deterministic, mass balance model for phytoplankton, nutrients, and dissolved oxygen was applied to the Mississippi River Plume/Inner Gulf Shelf (MRP/IGS) region. The model was calibrated to a comprehensive set of field data collected during July 1990 at over 200 sampling stations in the northern Gulf of Mexico. The spatial domain of the model is represented by a three-dimensional, 21-segment water-column grid extending from the Mississippi River Delta west to the Louisiana-Texas border, and from the shoreline seaward to the 30–60 m bathymetric contours. Diagnostic analyses and numerical experiments were conducted with the calibrated model to better understand the environmental processes controlling primary productivity and dissolved oxygen dynamics in the MRP/IGS region. Underwater light attenuation appears relatively more important than nutrient limitation in controlling rates of primary productivity. Chemical-biological processes appear relatively more important than advective-dispersive transport processes in controlling bottom-water dissolved oxygen dynamics. Oxidation of carbonaceous material in the water column, phytoplankton respiration, and sediment oxygen demand all appear to contribute significantly to total oxygen depletion rates in bottom waters. The estimated contribution of sediment oxygen demand to total oxygen-depletion rates in bottom waters ranges from 22% to 30%. Primary productivity appears to be an important source of dissolved oxygen to bottom waters in the region of the Atchafalaya River discharge and further west along the Louisiana Inner Shelf. Dissolved oxygen concentrations appear very sensitive to changes in underwater light attenuation due to strong coupling between dissolved oxygen and primary productivity in bottom waters. The Louisiana Inner Shelf in the area of the Atchafalaya River discharge and further west to the Texas border appears to be characterized by significantly different light attenuation-depth-primary productivity relationships than the area immediately west of the Mississippi Delta. Nutrient remineralization in the water column appears to contribute significantly to maintaining chlorophyll concentrations on the Louisiana Inner Shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号