首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
地球物理   5篇
地质学   17篇
海洋学   1篇
天文学   1篇
自然地理   4篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2004年   3篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
11.
We present results from a suite of forward transient numerical modelling experiments of the British and Irish Ice Sheet (BIIS), consisting of Scottish, Welsh and Irish accumulation centres, spanning the last Glacial period from 38 to 10 ka BP. The 3D thermomechanical model employed uses higher-order physics to solve longitudinal (membrane) stresses and to reproduce grounding-line dynamics. Surface mass balance is derived using a distributed degree-day calculation based on a reference climatology from mean (1961–1990) precipitation and temperature patterns. The model is perturbed from this reference state by a scaled NGRIP oxygen isotope curve and the SPECMAP sea-level reconstruction. Isostatic response to ice loading is computed using an elastic lithosphere/relaxed asthenosphere scheme. A suite of 350 simulations were designed to explore the parameter space of model uncertainties and sensitivities, to yield a subset of experiments that showed close correspondence to offshore and onshore ice-directional indicators, broad BIIS chronology, and the relative sea-level record. Three of these simulations are described in further detail and indicate that the separate ice centres of the modelled BIIS complex are dynamically interdependent during the build up to maximum conditions, but remain largely independent throughout much of the simulation. The modelled BIIS is extremely dynamic, drained mainly by a number of transient but recurrent ice streams which dynamically switch and fluctuate in extent and intensity on a centennial time-scale. A series of binge/purge, advance/retreat, cycles are identified which correspond to alternating periods of relatively cold-based ice, (associated with a high aspect ratio and net growth), and wet-based ice with a lower aspect ratio, characterised by streaming. The timing and dynamics of these events are determined through a combination of basal thermomechanical switching spatially propagated and amplified through longitudinal coupling, but are modulated and phase-lagged to the oscillations within the NGRIP record of climate forcing. Phases of predominant streaming activity coincide with periods of maximum ice extent and are triggered by abrupt transitions from a cold to relatively warm climate, resulting in major iceberg/melt discharge events into the North Sea and Atlantic Ocean. The broad chronology of the modelled BIIS indicates a maximum extent at ~20 ka, with fast-flowing ice across its western and northern sectors that extended to the continental shelf edge. Fast-flowing streams also dominate the Irish Sea and North Sea Basin sectors and impinge onto SW England and East Anglia. From ~19 ka BP deglaciation is achieved in less than 2000 years, discharging the freshwater equivalent of ~2 m global sea-level rise. A much reduced ice sheet centred on Scotland undergoes subsequent retrenchment and a series of advance/retreat cycles into the North Sea Basin from 17 ka onwards, culminating in a sustained Younger Dryas event from 13 to 11.5 ka BP. Modelled ice cover is persistent across the Western and Central Highlands until the last remnant glaciers disappear around 10.5 ka BP.  相似文献   
12.
This paper presents an investigation of the reactive transport of multicomponent chemicals in clays under coupled thermal, hydraulic, chemical and mechanical framework, considering the diffusion processes in detail. More specifically, combined effects due to the electrochemical and the thermal diffusion potentials are investigated. A theoretical framework for coupling thermal diffusion, i.e. the Soret effect, with electrochemical diffusion in a multi-ionic system is provided. An explicit form of a definition for the thermal diffusion coefficient in a multicomponent chemical transport model is developed. Chemical transport is linked to an advanced geochemical model, PHREEQC (version 2), in order to include chemical reactions. The effects of the combined diffusion potentials on the reactive transport of multicomponent chemicals are investigated by a series of numerical simulations of coupled thermal, hydraulic and chemical behaviour.  相似文献   
13.
Biosphere Sr isotope composition data from Iceland and Scotland suggest that terrestrially feeding birds from these two countries will have significantly different 87Sr/86Sr isotope composition in their tissues. The aim of this study is to test if these differences can be measured within the bone and feather of migratory wading birds, who feed terrestrially as juveniles, thus providing a provenance tool for these birds.  相似文献   
14.
15.
A parallel numerical finite difference model, employing the self-implicit method, for coupled heat and moisture transfer in unsaturated soil is presented. The model is programmed in Occam and executed on a parallel computing network of transputers. An assessment of the model was achieved via the simulation of a laboratory experiment. A very good correlation between experimental and numerical results was obtained. Comparison of results with those obtained from a parallel explicit method is also illustrated showing no significant difference. The computational time employing the new method was, however, found to be half of that obtained using the explicit method. The computational efficiency of the approach was also found to be very high. © 1997 John Wiley & Sons, Ltd.  相似文献   
16.
The effects of post-compaction residual lateral stress and salt concentration in the hydrating fluid on swelling pressures of compacted MX80 bentonite is brought out in this paper. In order to release the residual lateral stresses, following the static compaction process during preparation of specimens, compacted bentonite specimens were extruded from the specimen rings and then inserted back prior to testing them for swelling pressures in isochoric condition. The swelling pressure tests were carried out at several dry densities of the bentonite with distilled water and solutions of NaCl (0.1 and 1.0 M) as the hydrating fluids. With water, the test results showed that specimens that underwent extrusion and insertion processes exhibited about 10–15 % greater swelling pressures as compared to the specimens those that were compacted and tested. The influence of saline solutions was found to reduce the swelling pressure of the bentonite, but their impact was less significant at high compaction dry densities.  相似文献   
17.
A modified Jarvis–Stewart model of canopy transpiration (Ec) was tested over five ecosystems differing in climate, soil type and species composition. The aims of this study were to investigate the model's applicability over multiple ecosystems; to determine whether the number of model parameters could be reduced by assuming that site‐specific responses of Ec to solar radiation, vapour pressure deficit and soil moisture content vary little between sites; and to examine convergence of behaviour of canopy water‐use across multiple sites. This was accomplished by the following: (i) calibrating the model for each site to determine a set of site‐specific (SS) parameters, and (ii) calibrating the model for all sites simultaneously to determine a set of combined sites (CS) parameters. The performance of both models was compared with measured Ec data and a statistical benchmark using an artificial neural network (ANN). Both the CS and SS models performed well, explaining hourly and daily variation in Ec. The SS model produced slightly better model statistics [R2 = 0.75–0.91; model efficiency (ME) = 0.53–0.81; root mean square error (RMSE) = 0.0015–0.0280 mm h‐1] than the CS model (R2 = 0.68–0.87; ME = 0.45–0.72; RMSE = 0.0023–0.0164 mm h‐1). Both were highly comparable with the ANN (R2 = 0.77–0.90; ME = 0.58–0.80; RMSE = 0.0007–0.0122 mm h‐1). These results indicate that the response of canopy water‐use to abiotic drivers displayed significant convergence across sites, but the absolute magnitude of Ec was site specific. Period totals estimated with the modified Jarvis–Stewart model provided close approximations of observed totals, demonstrating the effectiveness of this model as a tool aiding water resource management. Analysis of the measured diel patterns of water use revealed significant nocturnal transpiration (9–18% of total water use by the canopy), but no Jarvis–Stewart formulations are able to capture this because of the dependence of water‐use on solar radiation, which is zero at night. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
18.
Sustainable long‐term storage of municipal waste and waste rock from mining activities in waste dumps (either above or below the land surface) requires minimization of percolation of rainwater into and then through stored waste material. There has been increasing attention given to the use of store‐release covers (transpirational covers) to achieve this. However, the design of such covers remains problematic because of the unique combinations of weather, vegetation composition, soils and their interactions that determine the efficacy of each design that could be available for the construction of the covers. The aim of the work described here was to use ecophysiological knowledge of soil‐plant‐atmosphere (SPA) interactions through the application of a detailed mechanistic model of the SPA continuum. We examined the relative influence of soil depth, soil texture, leaf area index and rainfall as determinants of rates of evapotranspiration and water budget for several different theoretical cover designs. We show that minimizing deep drainage requires a cover that has the following attributes: (i) a water storage capacity that is large enough to store the volume of water that is received as rainfall in above‐average wet months/seasons; (ii) a root distribution that explores the entire depth of the cover; (iii) a leaf area index that is present all year sufficient to evapotranspire monthly rainfall; and (iv) takes into account the intra‐annual and inter‐annual variability in rainfall and other climatic variables that drive ET. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
19.
The results of a numerical simulation of the observed field-drying behaviour of an unsaturated clay are described. In particular, the simulation of soil drying during the summer of 1983 is addressed. Richards' pressure-based unsaturated flow formulation is adopted. Transient numerical solutions are achieved by making use of the finite element method coupled with a finite difference timestepping scheme. The application of the algorithm to the simulation of the problem in hand is described. The initial moisture content distribution represents saturated conditions as indicated by field-measured data. Boundary conditions are determined from an interpretation of meteorological data. A simple method of representing plant root extraction of soil moisture is proposed. Comparisons of numerical results with field-measured data collected by British Gas are presented. Good correlation is obtained. The numerical simulation is shown to be capable of representing the observed field-drying behaviour. The complexity of modelling soil drying, as opposed to infiltration, is clearly illustrated by the work presented.  相似文献   
20.
Summary In this article, we argue that the spatial reorganization of local government structures may pose a significant threat to fragile local cultures. A recognition at the national level that policy structures are culturally specific (and not converging) is not always conceded at the very local level. Drawing on observations from Wales, we show how political change brings the danger of cultural neglect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号