首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70771篇
  免费   799篇
  国内免费   1233篇
测绘学   2395篇
大气科学   5380篇
地球物理   13793篇
地质学   29480篇
海洋学   4907篇
天文学   10913篇
综合类   2215篇
自然地理   3720篇
  2020年   198篇
  2019年   192篇
  2018年   7055篇
  2017年   6370篇
  2016年   4144篇
  2015年   675篇
  2014年   623篇
  2013年   1489篇
  2012年   2421篇
  2011年   5489篇
  2010年   4828篇
  2009年   5232篇
  2008年   4350篇
  2007年   5255篇
  2006年   1131篇
  2005年   1552篇
  2004年   1608篇
  2003年   1617篇
  2002年   1284篇
  2001年   755篇
  2000年   773篇
  1999年   681篇
  1998年   655篇
  1997年   636篇
  1996年   539篇
  1995年   533篇
  1994年   506篇
  1993年   473篇
  1992年   451篇
  1991年   387篇
  1990年   469篇
  1989年   374篇
  1988年   413篇
  1987年   464篇
  1986年   391篇
  1985年   564篇
  1984年   648篇
  1983年   626篇
  1982年   510篇
  1981年   524篇
  1980年   533篇
  1979年   470篇
  1978年   457篇
  1977年   426篇
  1976年   438篇
  1975年   390篇
  1974年   423篇
  1973年   419篇
  1972年   257篇
  1971年   203篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   
22.
A remarkable number of pulsar wind nebulae (PWN) are coincident with EGRET γ-ray sources. X-ray and radio imaging studies of unidentified EGRET sources have resulted in the discovery of at least six new pulsar wind nebulae (PWN). Stationary PWN (SPWN) appear to be associated with steady EGRET sources with hard spectra, typical for γ-ray pulsars. Their toroidal morphologies can help determine the geometry of the pulsar which is useful for constraining models of pulsed γ-ray emission. Rapidly moving PWN (RPWN) with more cometary morphologies seem to be associated with variable EGRET sources in regions where the ambient medium is dense compared to what is typical for the ISM.  相似文献   
23.
24.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   
25.
Multi-ring impact basins have been found on the surfaces of almost all planetary bodies in the Solar system with solid crusts. The details of their formation mechanism are still unclear. We present results of our numerical modeling of the formation of the largest known terrestrial impact craters. The geological and geophysical data on these structures accumulated over many decades are used to place constraints on the parameters of available numerical models with a dual purpose: (i) to choose parameters in available mechanical models for the crustal response of planetary bodies to a large impact and (ii) to use numerical modeling to refine the possible range of original diameters and the morphology of partially eroded terrestrial craters. We present numerical modeling results for the Vredefort, Sudbury, Chicxulub, and Popigai impact craters and compare these results with available geological and geophysical information.  相似文献   
26.
Parametric transduction offers valuable advantages for underwater acoustic communications. Perhaps the most significant benefit is the fact that high directivity is achieved by means of a physically small transmit transducer. This feature may, ultimately, be employed to permit long-range, low-frequency communication using a compact source. The high directivity is desirable to combat multipath propagation and to achieve data communications in water which is shallow by comparison with range. A real-time, high data-rate “model” differential phase shift keying (DPSK) communication system has been constructed and demonstrated. This system uses parametric transduction, with a 300-kHz primary frequency and a 50-kHz secondary frequency. Experimental results show that the system can be employed to combat multipath propagation in shallow water and can achieve high data-rate text and color image transmission at 10 and 20 kb s-1 for 2-DPSK and 4-DPSK, respectively, through a transmission bandwidth of 10 kHz. The “model” system was developed to confirm performance predictions for a future, operational long-range link employing a 50-kHz primary frequency and a 5-kHz secondary frequency  相似文献   
27.
The results of photometric observations of comet/asteroid 2060 Chiron at the Observatório do Pico dos Dias (Brazil-OPD) and the Observatoire de Haute-Provence (France-OHP) during 1994 and 1995 are presented. The analysis of the data shows a decrease of 2060 Chiron brightness from its peak values of 1988–1991. The absolute magnitude, Hv, varies from a maximum of 6.6 in February 1994 up to a minimum of 6.8 in June 1995. Therefore 2060 Chiron is back to a minimum of activity close to that of 1983–1985. The slope parameter G is found to be G = 0.71 ± 0.15. It is suggested that the H-G magnitude system, generally adopted to present 2060 Chiron brightness, is not the most appropriate due to the cometary activity of this object.  相似文献   
28.
Abstract— Cosmic dust accreted by the Earth can be extensively reprocessed during atmospheric encounters. The textures and compositions of reprocessed material provide important constraints by which the processes affecting extraterrestrial matter in the Earth's atmosphere can be better understood. Here we report results on an unusual Antarctic glassy cosmic spherule that demonstrates strong textural evidence for at least two grazing incidence encounters with the Earth's atmosphere prior to final reentry. The particle consists of a central glassy core with four peripheral glass lobes that transect a silicate particle rim. The texture of the particle confirms previous theoretical speculations that some high velocity, low incidence angle interplanetary particles experience numerous encounters with the Earth's atmosphere and also indicates that micrometeorites demonstrating multiple melting episodes should be interpreted with caution.  相似文献   
29.
30.
Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment, particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号