首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
测绘学   1篇
大气科学   3篇
地球物理   3篇
地质学   14篇
海洋学   2篇
天文学   15篇
自然地理   5篇
  2021年   1篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1885年   1篇
  1880年   3篇
排序方式: 共有43条查询结果,搜索用时 187 毫秒
41.
Abstract— Small terrestrial hypervelocity impact craters have a bowl-shaped form and are partially filled by an interior breccia lens, roughly parabolic in cross-section, of allochthonous material. This interior breccia volume is geometrically modelled as the volume of material slumped off the interior wall of the transient cavity during late stage crater modification. This model is tested by comparing the estimated volume of the breccia lens based on observational data with the calculated volume of slump material based on known dimensional parameters. The model fits well for Meteor Crater and Brent and is highly sensitive to changes in input parameters (e.g., a 10% increase in the input diameter for Meteor Crater produces an almost 200% increase in the model breccia lens volume). Further testing of the model with less constrained data from West Hawk Lake and Lonar leads to reasonable fits, given the sensitivity of the model to input parameters. Fits to other craters: Aouelloul, Tenoumer and Wolf Creek, where previous depth data are constrained only by gravity data, are unsatisfactory. However, revised depths can be obtained that fit both the gravity data and the model. While these tests do not provide unqualified support for the model, they do suggest that it may represent a good first order approximation. More and better quality dimensional data are required for more rigorous testing.  相似文献   
42.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   
43.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号