首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   1篇
  国内免费   3篇
测绘学   2篇
大气科学   16篇
地球物理   26篇
地质学   37篇
海洋学   38篇
天文学   8篇
综合类   2篇
自然地理   1篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   12篇
  2011年   15篇
  2010年   13篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  1999年   1篇
  1998年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
51.
An efficient calibration with remotely sensed (RS) data is important for accurate predictions at ungauged catchments. This study investigates the advantages of streamflow-sensitive regionalization on calibration with RS evapotranspiration (ET). Regionalization experiments are performed at 28 catchments in Australia. The catchments are classified into three groups based on annual rainfall and runoff coefficients. Streamflow, RS ET, and a multi-objective RS ET-streamflow calibration are performed using the DiffeRential Evolution Adaptive Metropolis algorithm in each catchment. Simplified Australian Water Resource Assessment-Landscape model is calibrated for a selection of five parameters. Posterior probability distributions of parameters from three calibrations performed at donor catchments in each group are inspected to find the parameter for regionalization in the individual group. In group 1 of wetter catchments, regionalization of parameter FsoilEmax (soil evaporation scaling factor) helps to simplify the calibration without any deterioration in ET, soil moisture (SM) and streamflow predictions. Regionalization of parameter Beta (coefficient describing rate of hydraulic conductivity increase with water content) in group 2 assists to improve the streamflow predictions with no decrement in ET and SM predictions. However, regionalization is not able to provide satisfactory results in group 3. Group 3 includes low-yielding catchments, with average annual rainfall below 1000 mm/year and runoff coefficient less than 0.1, where traditional streamflow calibration also fails to produce accurate results. This study concludes that streamflow-sensitive regionalization is effective for improving the efficacy of RS ET calibration in wetter catchments.  相似文献   
52.
A finite-volume method (FVM) using a multi-block grid technique has been applied to investigate the hydrodynamic coefficients and to categorize the two-dimensional flow pattern around a pair of adjacent cylinders (known here after as double cylinders). Matching grids were used at the interface between blocks (cylinders), and the boundary conditions are imposed around the periphery to exchange physical values across the interface. To validate the developed numerical method, a case with laminar viscous flow around a single cylinder was carried out, the results showed good agreement compared to previously published data. Hydrodynamic coefficients, Strouhal number, and stagnation point change were thoroughly investigated as a function of the separation between the two cylinders. It is found that the changes of hydrodynamic coefficients due to variations in separation are well characterized by the five different vortex flow patterns, which can also be used to explain the flow and vortex pattern around the double cylinders.  相似文献   
53.
Detecting the intertidal morphologic change using satellite data   总被引:3,自引:0,他引:3  
Previous research has suggested that competitive bottlenecks may exist for the Mediterranean grey mullets (Osteichthyes, Mugilidae) at the fry stage with the exotic Cyprinus carpio (Osteichthyes, Cyprinidae) playing a central role. As a consequence, the structure of grey mullet assemblages at later stages is thought to reflect previous competition as well as differences in osmoregulatory skills. This paper tests that hypothesis by examining four predictions about the relative abundance of five grey mullet species in 42 Western Mediterranean estuary sites from three areas (Aiguamolls de l'Empordà, Ebro Delta and Minorca) differing in the salinity level and occurrence of C. carpio. Field data confirmed the predictions as: (1) Liza aurata and Mugil cephalus were scarce everywhere and never dominated the assemblage; (2) Liza saliens dominated the assemblage where the salinity level was higher than 13; (3) Liza ramado always dominated the assemblage where the salinity level was lower than 13 and C. carpio was present; and (4) Chelon labrosus dominated the assemblage only where the salinity level was lower than 13 and C. carpio was absent. The catch per unit effort of C. labrosus of any size was smaller in the presence of C. carpio than where it had not been introduced, which is in agreement with the juvenile competitive bottleneck hypothesis. Discriminant analysis confirmed that the assemblage structure was linked to the salinity level and the occurrence of C. carpio for both early juveniles and late juveniles as well as adults. The data reported here reveal that the structure of grey mullet assemblages inhabiting Mediterranean estuaries is determined by salinity and competitive interactions at the fry stage.  相似文献   
54.
Despite a number of geotechnical investigations that have been carried out in the Busan new port area of South Korea, the local practicing engineers have been unable to deduce successfully the geotechnical properties of the clays due to their spatial variation. In the area, clay deposits, so-called Pusan clays, are unusually thick, varying from 20 m to 70 m in thickness. For this study, comprehensive geological and geotechnical investigations were carried out with sophisticated sampling techniques, in situ and laboratory tests as well as geological analyses at an additional three locations. As a result of the investigations, it was found that depositional environments are closely related to the relative changes in sea level and have different features depending on location and depth. The clays consist of soft and stiff clays in the upper and the lower layers, respectively, which are classified as normally consolidated and cemented clay. Moreover, most of the geotechnical properties undergo small changes due to their depositional environment. Information about these effects would be quite helpful to understand the spatial variation of geotechnical properties as well as the effect of sample disturbance. Some correlations which reflect the geological history of the deposts were conducted for physical indexes and mechanical properties.  相似文献   
55.
In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.  相似文献   
56.
It is difficult to scale up measurements of the sap flux density (Js) for the characterization of tree or stand transpiration (E) due to spatial variations in JS and their temporal changes. To assess spatial variations in the sap flux density of Korean pine (Pinus koraiensis) and their effects on E estimates, we measured the Js using Granier-type sensors. Within trees, the Js decreased exponentially with the radial depth, and the Js of the east aspects were higher than those of the west aspects. Among trees, there was a positive relationship between Js and the tree diameter at breast height, and this positive relationship became stronger as the transpiration demand increased. The spatial variations that caused large errors in E estimates (i.e., up to 110.8 % when radial variation was ignored) had varied systematically with environmental factors systematic characteristics in relation to environmental factors. However, changes in these variations did not generate substantial errors in the E estimates. For our study periods, the differences in the daily E (E D) calculated by ignoring radial, azimuthal and tree-to-tree variations and the measured E D were fairly constant, especially when the daily vapor pressure deficit (D_D) was higher than 0.6 kPa. These results imply that the effect of spatial variations changes on sap flow can be a minor source of error compared with spatial variations (radial, azimuthal and tree-to-tree variations) when considering E estimates.  相似文献   
57.
58.
We present an analysis of the X-ray data of a magnetic cataclysmic variable, BG CMi, obtained with ROSAT in March 1992 and with ASCA in April 1996. We show that four peaks clearly exist in the X-ray pulse profile, unlike a single peak found in the optical profile. The fluxes of two major pulses are 2–5 times larger than those of two minor pulses. The fraction of the total pulsed flux increases from 51% to 85% with increasing energy in 0.1–2.0 keV, whereas it decreases from 96% to 22% in 0.8–10 keV. We discuss the implications of our findings for the origin of the pulse profile and its energy dependence.  相似文献   
59.
60.
We assess the ability of Global Climate Models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) to simulate observed annual precipitation cycles over the Caribbean. Compared to weather station records and gridded observations, we find that both CMIP3 and CMIP5 models can be grouped into three categories: (1) models that correctly simulate a bimodal distribution with two rainfall maxima in May–June and September–October, punctuated by a mid-summer drought (MSD) in July–August; (2) models that reproduce the MSD and the second precipitation maxima only; and (3) models that simulate only one precipitation maxima, beginning in early summer. These categories appear related to model simulation of the North Atlantic Subtropical High (NASH) and sea surface temperature (SST) in the Caribbean Sea and Gulf of Mexico. Specifically, models in category 2 tend to anticipate the westward expansion of the NASH into the Caribbean in early summer. Early onset of NASH results in strong moisture divergence and MSD-like conditions at the time of the May–June observed precipitation maxima. Models in category 3 tend to have cooler SST across the region, particularly over the central Caribbean and the Gulf of Mexico, as well as a weaker Caribbean low-level jet accompanying a weaker NASH. In these models, observed June-like patterns of moisture convergence in the central Caribbean and the Central America and divergence in the east Caribbean and the Gulf of Mexico persist through September. This analysis suggests systematic biases in model structure may be responsible for biases in observed precipitation variability over the Caribbean and more confidence may be placed in the precipitation simulated by the GCMs that are able to correctly simulate seasonal cycles of SST and NASH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号