首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
地球物理   10篇
地质学   20篇
海洋学   10篇
自然地理   1篇
  2023年   1篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2013年   6篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2002年   1篇
  1999年   1篇
  1997年   5篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1961年   1篇
排序方式: 共有41条查询结果,搜索用时 203 毫秒
31.
This study investigates the magnetic and gravity signatures and associated seismic character of hyper-extended, exhumed and embryonic oceanic domains along the conjugate Iberia–Newfoundland rifted margins. As these margins have been drilled down to basement along their distal parts, it is possible to explore and test different geophysical techniques and interpretations. The aims of this work are twofold: (1) to investigate the location and nature of the two main marginal boundaries—the necking zone and the J Anomaly, which define the limits of major domains; and (2) to map the lateral variations of gravity and magnetic signatures and their detailed correlation with seismic data, from the proximal margin until the first unequivocal oceanic magnetic anomaly (e.g. C34 Anomaly). The results point out that the J Anomaly corresponds to a first-order tectono-magmatic boundary, with a basement formed by polyphase magmatism. It marks the boundary between the exhumed mantle domain, with little magmatic additions, from a domain oceanwards that reveals comparable trends, frequencies and a general magnetic pattern at both sides of the Atlantic, suggesting a coeval evolution. We propose that the domain between the J and the C34 Anomalies was formed by an embryonic spreading system, with intermittent budgets of magma, similar to those observed at very slow spreading systems. The J Anomaly may thus correspond to the location of lithospheric breakup though its origin and the nature of the domain oceanwards remains to be constrained.  相似文献   
32.
Inner boundary conditions describe the interaction of groundwater wells with the surrounding aquifer during pumping and are associated with well-skin damage that limits water production and water derived from wellbore storage. Pumping test evaluations of wells during immediate and early time flow require assignment of inner boundary conditions. Originally, these concepts were developed for vertical well screens, and later transferred to wellbores intersecting highly conductive structures, such as preferential flow zones in fractured and karstic systems. Conceptual models for pumping test analysis in complex bedrock geology are often simplified. Classic analytical solutions generally lump or ignore conditions that limit or enhance well productivity along the well screen at the onset of pumping. Numerical solutions can represent well drawdowns in complex geological settings, such as karst systems, more precisely than many analytical solutions by accounting for additional physical processes and avoiding assumptions and simplifications. Suitable numerical tools for flow simulations in karst are discrete pipe-continuum models that account for various physical processes such as the transient hydraulics of wellbores intersecting highly conductive structures during pumping.  相似文献   
33.
The nature and origin of the J‐magnetic anomaly along the Iberia–Newfoundland margins are controversial and its validity for plate kinematic reconstructions questioned. At present, it is interpreted as either an oceanic isochron or an edge effect of oceanic crust corresponding to lithosphere breakup. Both interpretations result in restorations that are in conflict with the current knowledge from Pyrenean and North Atlantic geology. We combine seismic interpretations and dating of magmatic additions with magnetic data to examine the nature and formation process of this anomaly and discuss its value for plate restorations. We show that the J‐anomaly is the result of polygenic and multiple magmatic events occurring during and after the formation of the first oceanic crust. Therefore, we conclude that the J‐anomaly cannot be used for plate kinematic studies and, more generally, we question the validity of using ill‐defined magnetic anomalies outside unequivocal oceanic domains for plate reconstructions.  相似文献   
34.
A method to estimate reactive transport parameters as well as geometric conduit parameters from a multitracer test in a karst aquifer is provided. For this purpose, a calibration strategy was developed applying the two-region nonequilibrium model CXTFIT. The ambiguity of the model calibration was reduced by first calibrating the model with respect to conservative tracer breakthrough and later transferring conservative transport parameters to the reactive model calibration. The reactive transport parameters were only allowed to be within a defined sensible range to get reasonable calibration values. This calibration strategy was applied to breakthrough curves obtained from a large-scale multitracer test, which was performed in a karst aquifer of the Swabian Alb, Germany. The multitracer test was conducted by the simultaneous injection of uranine, sulforhodamine G, and tinopal CBS-X. The model succeeds to represent the tracer breakthrough curves (TBCs) of uranine and sulforhodamine G and verifies that tracer-rock interactions preferably occur in the immobile fluid region, although the fraction of this region amounts to only 3.5% of the total water. However, the model failed to account for the long tailing observed in the TBC of tinopal CBS-X. Sensitivity analyses reveal that model results for the conservative tracer transport are most sensitive to average velocity and volume fraction of the mobile fluid region, while dispersion and mass transfer coefficients are least influential. Consequently, reactive tracer calibration allows the determination of sorption sites in the mobile and immobile fluid region at small retardation coefficients.  相似文献   
35.
Hydraulic fracturing of unconventional gas reservoirs rapidly developed especially in the USA to an industrial scale during the last decade. Potential adverse effects such as the deterioration of the quality of exploitable groundwater resources, areal footprints, or even the climate impact were not assessed. Because hydraulic fracturing has already been practised for a long time also in conventional reservoirs, the expansion into the unconventional domain was considered to be just a minor but not a technological step, with potential environmental risks. Thus, safety and environmental protection regulations were not critically developed or refined. Consequently, virtually no baseline conditions were documented before on-site applications as proof of evidence for the net effect of environmental impacts. Not only growing concerns in the general public, but also in the administrations in Germany promoted the commissioning of several expert opinions, evaluating safety, potential risks, and footprints of the technology in focus. The first two publications of the workgroup “Risks in the Geological System” of the independent “Information and Dialogue process on hydraulic fracturing” (commissioned by ExxonMobil Production Deutschland GmbH) comprises the strategy and approaches to identify and assess the potential risks of groundwater contamination of the exploitable groundwater system in the context of hydraulic fracturing operations in the Münsterland cretaceous basin and the Lower Saxony Basin, Germany. While being specific with respect to local geology and the estimation of effective hydraulic parameters, generalized concepts for the contamination risk assessment were developed. The work focuses on barrier effectiveness of different units of the overburden with respect to the migration of fracking fluids and methane, and considers fault zones as potential fluid pathway structures.  相似文献   
36.
The semi-arid region of the Dead Sea heavily relies on groundwater resources. This dependence is exacerbated by both population growth and agricultural activities and demands a sustainable groundwater management. Yet, information on groundwater discharge as one main component for a sustainable management varies significantly in this area. Moreover, discharge locations, volume and temporal variability are still only partly known. A multi-temporal thermal satellite approach is applied to localise and semi-quantitatively assess groundwater discharge along the entire coastline. The authors use 100 Landsat ETM + band 6.2 data, spanning the years between 2000 and 2011. In the first instance, raw data are transformed to sea surface temperature (SST). To account for groundwater intermittency and to provide a seasonally independent data set ?T (maximum SST range) per-pixel within biennial periods is calculated subsequently. Groundwater affected areas (GAA) are characterised by ?T < 8.5 °C. Unaffected areas exhibit values >10 °C. This allows the exact identification of 37 discharge locations (clusters) along the entire Dead Sea coast, which spatially correspond to available in situ discharge observations. Tracking the GAA extents as a direct indicator of groundwater discharge volume over time reveals (1) a temporal variability correspondence between GAA extents and recharge amounts, (2) the reported rigid ratios of discharge volumes between different spring areas not to be valid for all years considering the total discharge, (3) a certain variability in discharge locations as a consequence of the Dead Sea level drop, and finally (4) the assumed flushing effect of old Dead Sea brines from the sedimentary body to have occurred at least during the two series of 2000–2001 and 2010–2011.  相似文献   
37.

Characterization of karst systems and forecast of their state variables are essential for groundwater management and engineering in karst regions. These objectives can be met by the use of process-based discrete-continuum models (DCMs). However, results of DCMs may suffer from inversion nonuniqueness. It has been demonstrated that the joint inversion of observations regulated by different natural processes can tackle the nonuniqueness issue in groundwater modeling. However, this has not been tested for DCMs thus far. This research proposes a methodology for the joint inversion of hydro-thermo-chemo-graphs, applying to two small-scale sink-to-spring experiments at Freiheit Spring, Minnesota, USA. In order to address conceptual uncertainty, a multimodel approach was implemented, featuring seven mutually exclusive variants. Spring hydro-thermo-chemo-graphs, for all the variants simulated by MODFLOW-CFPv2, were jointly inverted using a weighted least squares algorithm. Subsequently, models were compared in terms of inversion and forecast performances, as well as parameter uncertainties. Results reveal the suitability of the DCM approach for simultaneous inversion and forecast of hydro-physico-chemical behavior of karst systems, even at a scale of meters and seconds. The estimated volume of the tracer conduit passage ranges from approximately 46–51 m3, which is comparable to the estimate from the flood-pulse method. Moreover, it was demonstrated that the thermograph and hydrograph contain more information about aquifer characteristics than the chemograph. However, this finding can be site-specific and should depend on the analysis scale, the considered conceptual models, and the hydrological state, which are potentially affected by minor unaccountable processes and features.

  相似文献   
38.
The study of very low-spreading ridges has become essential to ourunderstanding of the mid-oceanic ridge processes. The Southwest Indian Ridge(SWIR) , a major plate boundary of the world oceans, separating Africa fromAntarctica for more than 100 Ma, has such an ultra slow-spreadingrate. Its other characteristic is the fast lengthening of its axis at bothBouvet and Rodrigues triple junctions. A survey was carried out in thespring of 1993 to complete a multibeam bathymetric coverage of the axisbetween Atlantis II Fracture Zone (57° E) and the Rodrigues triplejunction (70° E). After a review of what is known about the geometry,structure and evolution of the SWIR, we present an analysis of the newalong-axis bathymetric data together with previously acquiredacross-axis profiles. Only three transform faults, represented byAtlantis II FZ, Novara FZ, and Melville FZ, offset this more than 1000 kmlong section of the SWIR, showing that the offsets are more generallyaccommodated by ridge obliquity and non-transform discontinuities. From comparison of the axial geometry, bathymetry, mantle Bouguer anomaly and central magnetic anomaly, three large sections (east of Melville FZ, between Melville FZ and about 65°30 E, and from there to the Rodrigues triple junction) can be distinguished. The central member, east of Melville FZ, does not resemble any other known mid-oceanic ridge section: the classical signs of the accretion (mantle Bouguer anomaly, central magnetic anomaly) are only observed over three very narrow and shallow axis sections. We also apply image processing techniques to the satellite gravity anomaly map of Smith and Sandwell (1995) to determine the off-axis characteristics of the Southwest Indian Ridge domain, more especially the location of the triple junction and discontinuities traces. We conclude that the large-scale segmentation of the axis has been inherited from the evolution of the Rodrigues triple junction.  相似文献   
39.
A new type of vertical circulation well (VCW) is used for groundwater dewatering at construction sites. This type of VCW consists of an abstraction screen in the upper part and an injection screen in the lower part of a borehole, whereby drawdown is achieved without net withdrawal of groundwater from the aquifer. The objective of this study is to evaluate the operation of such wells including the identification of relevant factors and parameters based on field data of a test site and comprehensive numerical simulations. The numerical model is able to delineate the drawdown of groundwater table, defined as free‐surface, by coupling the arbitrary Lagrangian–Eulerian algorithm with the groundwater flow equation. Model validation is achieved by comparing the field observations with the model results. Eventually, the influences of selected well operation and aquifer parameters on drawdown and on the groundwater flow field are investigated by means of parameter sensitivity analysis. The results show that the drawdown is proportional to the flow rate, inversely proportional to the aquifer conductivity, and almost independent of the aquifer anisotropy in the direct vicinity of the well. The position of the abstraction screen has a stronger effect on drawdown than the position of the injection screen. The streamline pattern depends strongly on the separation length of the screens and on the aquifer anisotropy, but not on the flow rate and the horizontal hydraulic conductivity.  相似文献   
40.
The ability to continually monitor several meteorological parameters is needed to estimate snow surface energy balance components in mountainous terrain. In remote mountainous locations, limited accessibility and extreme weather conditions limit the use of delicate meteorological instrumentation. Robust instrumentation and radio telemetry are often needed to measure snow surface energy exchanges. This study examined the practicality and effectiveness of robust instrumentation in estimating radiative and turbulent exchanges in the forested Bear River Mountains of northern Utah. Measurement of reflected shortwave radiation was problematic due to possible selective absorption in the infra-red range. This resulted in overestimates of reflected shortwave radiation and decreased estimates of now surface albedo. During high snowfall, the pyranometer and net radiometer were occasionally covered with snow, resulting in inaccurate radiation measurements. Snow typically melted from instrument surfaces in less than one day under full sun. A relative humidity measurement accuracy of ± 4% may have resulted in a possible error of 20% in the calculation of vapour pressure. Snow depth measurement with an acoustical sensor was affected by new or blowing snow, which resulted in inaccurate snow depth measurement 16.2% of the time. The longest period without a valid snow depth measurement was 19.5 hours. A new snow temperature thermocouple ladder was designed and constructed and provided accurate within-pack temperature measurements throughout the pre-melt and melt season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号