首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  国内免费   2篇
测绘学   1篇
大气科学   5篇
地球物理   11篇
地质学   14篇
海洋学   7篇
天文学   19篇
综合类   1篇
自然地理   15篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   6篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1978年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
31.
Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid‐flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean‐field analytical model that shows how each modeled rock property depends on the nature of the crack population. The crack populations are described by a crack density, a probability distribution for the crack apertures and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. However, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.  相似文献   
32.
This article focuses on the dynamics of using numbers to construct an image of social reality in disaster areas. Numbers are neither objective nor value-neutral but are rather generated, transmitted and shared with social signification. In other words, numbers can be thought of as simply socially constructed information. Statistics and other numbers usually work in positive ways. However, it is also possible that using numbers in the media can lead to unintended messages that could produce negative consequences. We conducted field studies in disaster-stricken areas of the 2008 Wenchuan earthquake in China and compared findings to the case of the 1995 Kobe earthquake in Japan in order to examine how numbers—in terms of the amount of donations, the timeline of reconstruction projects and casualty figures—construct social reality and cause a variety of social dysfunctions.  相似文献   
33.
Luhmann  J.G.  Li  Yan  Zhao  Xuepu  Yashiro  Seiji 《Solar physics》2003,213(2):367-386
Most work on coronal mass ejection (CME) interpretation focuses on the involved active region rather than on the large-scale coronal context. In this paper a global potential-field source-surface model of the coronal magnetic field is used to evaluate the sensitivity of the coronal field configuration to the location, orientation, and strength of a bipolar active region relative to a background polar field distribution. The results suggest that the introduction of antiparallel components between the field of the active region and the background field can cause significant topological changes in the large-scale coronal magnetic field resembling observations during some simple CMEs. Antiparallel components can be introduced in the real corona by the diffusion and convection of photospheric fields, flux emergence, or erupted or shear-induced twist of active-region fields. Global MHD models with time-dependent boundary conditions could easily test the stability of such configurations and the nature of any related transients.  相似文献   
34.
An experimental technique to measure crater growth is presented whereby a high speed video captures profiles of a crater forming after impact obtained using a vertical laser sheet centered on the impact point. Unlike previous so called “quarter-space experiments,” where projectiles were launched along a transparent Plexiglas sheet so that growth of half a crater could be viewed, the use of the laser sheet permits viewing changes in crater shape without any physical interference to the cratering process. This technique indicates that for low velocity impacts (<300 m/s) into 220 μm glass beads that are without cohesion and where the projectile is not disrupted, craters initially grow somewhat proportionally, but that later their depths remain essentially constant while their diameters continue to expand. In addition, these experiments indicate that as the impact velocity increases, the rate of growth and the transient depth to diameter ratio at the end of ejecta excavation decreases. These last two observations are probably due to the large time of penetration of the projectile, which becomes a significant fraction of the time of crater formation. This is contrary to the expectations for the scaling rules, which assumes a point source. Very high curtain angles (>45°) are also seen, and could be due to the low friction angle of the target. Significant crater modification, which is rarely seen in “quarter-space experiments,” is also observed and appears to be controlled by the dynamic angle of repose of the target. These latter observations indicate that differences in target friction angles may need to be considered when determining near rim ejecta-mass distributions and large-scale crater modification processes on the planets.  相似文献   
35.
Prominent postcursors to S/Sdiff waves with delays as large as 26 s are observed in Northern America for Papua New Guinea events. These waves sample the northern side of the Pacific large low shear velocity province revealed by global shear velocity (Vs) tomographic models. The emergence of the postcursors strongly depends on the epicenter-to-station azimuth, indicating that the waveforms are, in general, strongly affected by 3-dimensional (3D) heterogeneities. We limit our focus to an azimuthal range around 60°, measured clockwise from north at the epicenter, where the records show a relatively small azimuthal variation, suggesting a relatively small 3D effect there. In this azimuthal range we attempt 2D structural modelling along the great circle plane towards stations in southern US. First, we use a 2D ray theory to search for a range of models, which generate a postcursor to the main Sdiff phase with a delay time consistent with the observations. Then, for some typical models, we calculated waveforms at periods down to 5 s using the spectral element method. We obtained several models that provide synthetic waveforms in a fair agreement with the observations. The result shows that two types of low Vs regions are required to explain the data. One is a broad and weak anomaly region with a Vs reduction of 5% or so, constituting a part of the Pacific large low shear velocity province at the base of the mantle. The other is a laterally localized strong anomaly region with a more than 25% reduction of Vs within a thickness of at least 80 km and a width on the order of 500 km.  相似文献   
36.
The major and trace element concentrations of volcanic glass shards from visible tephra layers in the SG93 and SG06 cores from Lake Suigetsu, central Japan, were determined by femtosecond laser ablation–inductively coupled plasma–mass spectrometry. The glass-shard analyses, together with the petrographic properties of the tephra samples, allow the Suigetsu tephra layers to be broadly classified into tephras derived from calderas on Kyushu Island, and from Daisen and Sambe volcanoes in the Chugoku district of southwest Japan. The layers correlated with tephras from Kuju caldera and Daisen volcano, and with the younger Sambe tephras, have adakitic elemental features. A Suigetsu tephra sample correlated with the Sambe−Kisuki tephra based on petrographic properties has an elemental pattern similar to that of the Toya tephra from Hokkaido Island, northeast Japan. This match implies that tephras from northeast Japan, as well as Kyushu–Chugoku tephras, are possible correlatives of the Suigetsu tephra layers. Both petrographic properties and major–trace element data of volcanic glass shards are essential for robust tephra correlations, and hierarchical cluster analysis proved additionally useful in statistically evaluating relationships among the tephras.  相似文献   
37.
This paper highlights how the emerging record of satellite observations from the Earth Observation System (EOS) and A-Train constellation are advancing our ability to more completely document and understand the underlying processes associated with variations in the Earth’s top-of-atmosphere (TOA) radiation budget. Large-scale TOA radiation changes during the past decade are observed to be within 0.5?Wm?2 per decade based upon comparisons between Clouds and the Earth’s Radiant Energy System (CERES) instruments aboard Terra and Aqua and other instruments. Tropical variations in emitted outgoing longwave (LW) radiation are found to closely track changes in the El Ni?o-Southern Oscillation (ENSO). During positive ENSO phase (El Ni?o), outgoing LW radiation increases, and decreases during the negative ENSO phase (La Ni?a). The coldest year during the last decade occurred in 2008, during which strong La Nina conditions persisted throughout most of the year. Atmospheric Infrared Sounder (AIRS) observations show that the lower temperatures extended throughout much of the troposphere for several months, resulting in a reduction in outgoing LW radiation and an increase in net incoming radiation. At the global scale, outgoing LW flux anomalies are partially compensated for by decreases in midlatitude cloud fraction and cloud height, as observed by Moderate Resolution Imaging Spectrometer and Multi-angle Imaging SpectroRadiometer, respectively. CERES data show that clouds have a net radiative warming influence during La Ni?a conditions and a net cooling influence during El Ni?o, but the magnitude of the anomalies varies greatly from one ENSO event to another. Regional cloud-radiation variations among several Terra and A-Train instruments show consistent patterns and exhibit marked fluctuations at monthly timescales in response to tropical atmosphere-ocean dynamical processes associated with ENSO and Madden–Julian Oscillation.  相似文献   
38.
Seiji Yasuda  Hitoshi Miura 《Icarus》2009,204(1):303-315
We carried out three-dimensional hydrodynamics simulations of the disruption of a partially-molten dust particle exposed to high-speed gas flow to examine the compound chondrule formation due to mutual collisions between the fragments (fragment-collision model; [Miura, H., Yasuda, S., Nakamoto, T., 2008a. Icarus194, 811-821]).In the shock-wave heating model, which is one of the most plausible models for chondrule formation, the gas friction heats and melts the surface of the cm-sized dust particle (parent particle) and then the strong gas ram pressure causes the disruption of the molten surface layer. The hydrodynamics simulation shows details of the disruptive motion of the molten surface, production of many fragments and their trajectories parting from the parent particle, and mutual collisions among them. In our simulation, we identified 32 isolated fragments extracted from the parent particle. The size distribution of the fragments was similar to that obtained from the aerodynamic experiment in which a liquid layer was attached to a solid core and it was exposed to a gas flow. We detected 12 collisions between the fragments, which may result in the compound chondrule formation. We also analyzed the paths of all the fragments in detail and found the importance of the shadow effect in which a fragment extracted later blocks the gas flow toward a fragment extracted earlier. We examined the collision velocity and impact parameter of each collision and found that 11 collisions should result in coalescence. It means that the ratio of coalescent bodies to single bodies formed in this disruption of a parent particle is Rcoa=11/(32-11)=0.52. We concluded that compound chondrule formation can occur just after the disruption of a cm-sized molten dust particle in shock-wave heating.  相似文献   
39.
One of the key components controlling the chemical composition and climatology of Titan's atmosphere is the removal of reactive atomic hydrogen from the atmosphere. A proposed process of the removal of atomic hydrogen is the heterogeneous reaction with organic aerosol. In this study, we investigate the effect of heterogeneous reactions in Titan's atmospheric chemistry using new measurements of the heterogeneous reaction rate [Sekine, Y., Imanaka, H., Matsui, T., Khare, B.N., Bakes, E.L.O., McKay, C.P., Sugita, S., 2008. Icarus 194, 186-200] in a one-dimensional photochemical model. Our results indicate that 60-75% of the atomic hydrogen in the stratosphere and mesosphere are consumed by the heterogeneous reactions. This result implies that the heterogeneous reactions on the aerosol surface may predominantly remove atomic hydrogen in Titan's stratosphere and mesosphere. The results of our calculation also indicate that a low concentration of atomic hydrogen enhances the concentrations of unsaturated complex organics, such as C4H2 and phenyl radical, by more than two orders in magnitude around 400 km in altitude. Such an increase in unsaturated species may induce efficient haze production in Titan's mesosphere and upper stratosphere. These results imply a positive feedback mechanism in haze production in Titan's atmosphere. The increase in haze production would affect the chemical composition of the atmosphere, which might induce further haze production. Such a positive feedback could tend to dampen the loss and supply cycles of CH4 due to an episodic CH4 release into Titan's atmosphere.  相似文献   
40.
We propose a new scenario for compound chondrule formation named as “fragment-collision model,” in the framework of the shock-wave heating model. A molten cm-sized dust particle (parent) is disrupted in the high-velocity gas flow. The extracted fragments (ejectors) are scattered behind the parent and the mutual collisions between them will occur. We modeled the disruption event by analytic considerations in order to estimate the probability of the mutual collisions assuming that all ejectors have the same radius. In the typical case, the molten thin () layer of the parent surface will be stripped by the gas flow. The stripped layer is divided into about 200 molten ejectors (assuming that the radius of ejectors is 300 μm) and then they are blown away by the gas flow in a short period of time (). The stripped layer is leaving from the parent with the velocity of depending on the viscosity, and we assumed that the extracted ejectors have a random velocity Δv of the same order of magnitude. Using above values, we can estimate the number density of ejectors behind the parent as . These ejectors occupy ∼9% of the space behind the parent in volume. Considering that the collision rate (number of collisions per unit time experienced by an ejector) is given by Rcoll=σcollnv, where σcoll is the cross-section of collision [e.g., Gooding, J.K., Keil, K., 1981. Meteoritics 16, 17-43], we obtain by substituting above values. Since most collisions occur within the short duration () before the ejectors are blown away, we obtain the collision probability of Pcoll∼0.36, which is the probability of collisions experienced by an ejector in one disruption event. The estimated collision probability is about one order of magnitude larger than the observed fraction of compound chondrules. In addition, the model predictions are qualitatively consistent with other observational data (oxygen isotopic composition, textural types, and size ratios of constituents). Based on these results, we concluded that this new model can be one of the strongest candidates for the compound chondrule formation. It should be noted that all collisions do not necessarily lead to the compound chondrule formation. The formation efficiency and the future works which should be investigated in the forthcoming paper are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号