首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   16篇
  国内免费   18篇
测绘学   4篇
大气科学   19篇
地球物理   107篇
地质学   124篇
海洋学   21篇
天文学   65篇
综合类   10篇
自然地理   19篇
  2024年   2篇
  2023年   2篇
  2022年   8篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   30篇
  2017年   19篇
  2016年   19篇
  2015年   27篇
  2014年   20篇
  2013年   31篇
  2012年   24篇
  2011年   27篇
  2010年   20篇
  2009年   13篇
  2008年   14篇
  2007年   18篇
  2006年   7篇
  2005年   7篇
  2004年   11篇
  2003年   5篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有369条查询结果,搜索用时 46 毫秒
141.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   
142.
143.
Chemical analysis of 60 samples from the Jusa and Barsuchi Log volcanogenic massive sulfide (VMS) deposits by inductively coupled plasma–mass spectrometry shows that, on average, the Jusa deposit is more enriched in the chalcophilic elements than the Barsuchi Log deposit, whereas the Barsuchi Log deposit is more enriched in the lithogenous elements and Te. In addition, the yellow ores in these deposits are more enriched on average in Cu, As and Mo and the black ores more enriched in Zn, Ga, Cd, Sb, Ba , Hg and Pb relative to each other. Both these deposits are similar in composition to the Kuroko deposits of NE Honshu and may be considered to be analogs of these deposits. The Kuroko deposits, however, contain much higher concentrations of As, Ag, Sb, Ba, Hg and lower contents of Te on average than the Jusa and Barsuchi Log deposits. Based on the higher contents of Te in the Barsuchi Log deposit compared to the Jusa deposit, as well as on textural considerations, it is concluded that the Barsuchi Log deposit is intermediate between the Urals- and Kuroko-type deposits, whereas the Jusa deposit is more analogous to the Kuroko-type deposits. Based on the compositional data presented here, the Jusa and Barsuchi Log deposits may be described as Zn-Pb-Cu-Ba deposits rather than as Zn-Cu-Ba deposits, as the Baimak-type deposits of the west Magnitogrosk zone have previously been described.  相似文献   
144.
Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: \(42.53{^{\circ }}\hbox {N}\)\(72.17{^{\circ }}\hbox {W}\)) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: \(2.86{^{\circ }}\hbox {S}\)\(54.96{^{\circ }}\hbox {W}\)). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers’ qualitative reports of ‘scattered’ and ‘broken’ clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal “radiative forcing” linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.  相似文献   
145.
Coupled hydrological and atmospheric modeling is an efficient method for snowmelt runoff forecast in large basins. We use short-range precipitation forecasts of mesoscale atmospheric Weather Research and Forecasting (WRF) model combining them with ground-based and satellite observations for modeling snow accumulation and snowmelt processes in the Votkinsk reservoir basin (184,319 km2). The method is tested during three winter seasons (2012–2015). The MODIS-based vegetation map and leaf area index data are used to calculate the snowmelt intensity and snow evaporation in the studied basin. The GIS-based snow accumulation and snowmelt modeling provides a reliable and highly detailed spatial distribution for snow water equivalent (SWE) and snow-covered areas (SCA). The modelling results are validated by comparing actual and estimated SWE and SCA data. The actual SCA results are derived from MODIS satellite data. The algorithm for assessing the SCA by MODIS data (ATBD-MOD 10) has been adapted to a forest zone. In general, the proposed method provides satisfactory results for maximum SWE calculations. The calculation accuracy is slightly degraded during snowmelt periods. The SCA data is simulated with a higher reliability than the SWE data. The differences between the simulated and actual SWE may be explained by the overestimation of the WRF-simulated total precipitation and the unrepresentativeness of the SWE measurements (snow survey).  相似文献   
146.
147.
148.
A combination of 2-year-long mooring-based measurements and snapshot conductivity–temperature–depth (CTD) observations at the continental slope off Spitsbergen (81°30′N, 31°00′E) is used to demonstrate a significant hydrographic seasonal signal in Atlantic Water (AW) that propagates along the Eurasian continental slope in the Arctic Ocean. At the mooring position this seasonal signal dominates, contributing up to 50% of the total variance. Annual temperature maximum in the upper ocean (above 215 m) is reached in mid-November, when the ocean in the area is normally covered by ice. Distinct division into ‘summer’ (warmer and saltier) and ‘winter’ (colder and fresher) AW types is revealed there. Estimated temperature difference between the ‘summer’ and ‘winter’ waters is 1.2 °C, which implies that the range of seasonal heat content variations is of the same order of magnitude as the mean local AW heat content, suggesting an important role of seasonal changes in the intensity of the upward heat flux from AW. Although the current meter observations are only 1-year long, they hint at a persistent, highly barotropic current with little or no seasonal signal attached.  相似文献   
149.
150.
Protoliths of highly metamorphosed gneisses from the Erzgebirge are deduced from the morphology, age and chemistry of zircons as well as from whole rock geochemistry and are compared with lower-grade rocks of Lusatia. Gneisses with similar structural appearance and/or geochemical pattern may have quite different protoliths. The oldest rocks in the Erzgebirge are paragneisses representing meta-greywackes and meta-conglomerates. The youngest group of zircon of meta-greywackes that did not undergo Pb loss represents the youngest igneous component for source rocks (about 575 Ma). Similar ages and zircon morphology reflect the subordinate formation of new zircon grains or only zircon rims in the augengneiss from Bärenstein and Wolkenstein, which probably represent metamorphic equivalents to Lower Cambrian two-mica granodiorites from Lusatia. Bulk rock chemistry, intense fracturing and high U and Th concentrations of zircons suggest deformation-induced and fluid-enhanced recrystallisation of zircon grains. Temperatures during tectonic overprinting—too low to reset zircon ages—indicate mid- or upper crustal levels for shearing recorded in these augengneisses. Lower Cambrian (~540 Ma) granodiorites are widespread in Lusatia but are exclusively represented by the Freiberg gneiss dome in the Eastern Erzgebirge. Ordovician protolith ages were recorded by zircons from the augengneisses of the Reitzenhain–Catherine dome and the Schwarzenberg dome (Western Erzgebirge) documenting significant regional differences between the eastern and the western Erzgebirge (~540 vs. ~490 Ma). In the Western Erzgebirge, most meta-volcanic rocks (muscovite gneisses) and meta-granites (mainly red augengneisses) yield Ordovician zircon ages, whereas in the Eastern part, similar rocks mainly recorded Lower Cambrian protolith ages. Zircon overprinting was highest within discrete tectonic zones where the combination of fluid infiltration and deformation induced variable degrees of recrystallisation and formation of a new augengneiss structure. Variable degrees of Pb loss caused age shifts that do not correspond to changes in zircon morphology but may be associated with U and Th enrichments. Major changes in bulk rock composition appear to be restricted to discrete zones and to (U)HP nappes, whereas gneisses with a MP–MT metamorphic overprint basically show no geochemical modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号