首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5494篇
  免费   554篇
  国内免费   164篇
测绘学   234篇
大气科学   604篇
地球物理   2001篇
地质学   2216篇
海洋学   309篇
天文学   404篇
综合类   186篇
自然地理   258篇
  2022年   7篇
  2021年   18篇
  2020年   7篇
  2019年   12篇
  2018年   438篇
  2017年   378篇
  2016年   252篇
  2015年   156篇
  2014年   117篇
  2013年   121篇
  2012年   657篇
  2011年   429篇
  2010年   122篇
  2009年   138篇
  2008年   127篇
  2007年   122篇
  2006年   140篇
  2005年   845篇
  2004年   886篇
  2003年   670篇
  2002年   185篇
  2001年   84篇
  2000年   53篇
  1999年   27篇
  1998年   11篇
  1997年   24篇
  1996年   16篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   6篇
  1991年   17篇
  1990年   12篇
  1989年   12篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1980年   7篇
  1979年   3篇
  1976年   4篇
  1975年   4篇
  1973年   3篇
  1972年   5篇
  1969年   6篇
  1968年   4篇
  1965年   3篇
  1948年   2篇
排序方式: 共有6212条查询结果,搜索用时 187 毫秒
121.
122.
The internal energies and entropies of 21 well-known minerals were calculated using the density functional theory (DFT), viz. kyanite, sillimanite, andalusite, albite, microcline, forsterite, fayalite, diopside, jadeite, hedenbergite, pyrope, grossular, talc, pyrophyllite, phlogopite, annite, muscovite, brucite, portlandite, tremolite, and CaTiO3–perovskite. These thermodynamic quantities were then transformed into standard enthalpies of formation from the elements and standard entropies enabling a direct comparison with tabulated values. The deviations from reference enthalpy and entropy values are in the order of several kJ/mol and several J/mol/K, respectively, from which the former is more relevant. In the case of phase transitions, the DFT-computed thermodynamic data of involved phases turned out to be accurate and using them in phase diagram calculations yields reasonable results. This is shown for the Al2SiO5 polymorphs. The DFT-based phase boundaries are comparable to those derived from internally consistent thermodynamic data sets. They even suggest an improvement, because they agree with petrological observations concerning the coexistence of kyanite?+?quartz?+?corundum in high-grade metamorphic rocks, which are not reproduced correctly using internally consistent data sets. The DFT-derived thermodynamic data are also accurate enough for computing the P–T positions of reactions that are characterized by relatively large reaction enthalpies (>?100 kJ/mol), i.e., dehydration reactions. For reactions with small reaction enthalpies (a few kJ/mol), the DFT errors are too large. They, however, are still far better than enthalpy and entropy values obtained from estimation methods.  相似文献   
123.
卫星估雨精度的不确定性受到当地降雨类型和像元内降雨非均匀性影响,而结合这两个关键因素开展半干旱草原卫星估雨的研究有限.2009年夏,我们在中国锡林郭勒半干旱草原用多部微雨雷达和雨量计构建了9 km卫星像元降雨观测网,观测了像元内降雨非均匀性(空间变异系数CV),并评估了卫星估雨精度.结果表明:(1)CV值受像元内平均降雨量,降雨类型,降雨云面积及移向等影响,如高Cv值的降雨过程大多为平均降雨量小,对流性降雨过程,降雨云边缘像元CV值较高;(2)TRMM 3B42V7卫星估雨产品适用性较好,CMORPH和PERSIANN次之,但TRMM 3B42V7易在半干旱草原湖泊处高估降雨.  相似文献   
124.

Background

Concern about climate change has motivated France to reduce its reliance on fossil fuel by setting targets for increased biomass-based renewable energy production. This study quantifies the carbon costs and benefits for the French forestry sector in meeting these targets. A forest growth and harvest simulator was developed for French forests using recent forest inventory data, and the wood-use chain was reconstructed from national wood product statistics. We then projected wood production, bioenergy production, and carbon balance for three realistic intensification scenarios and a business-as-usual scenario. These intensification scenarios targeted either overstocked, harvest-delayed or currently actively managed stands.

Results

All three intensification strategies produced 11.6–12.4 million tonnes of oil equivalent per year of wood-based energy by 2026, which corresponds to the target assigned to French wood-energy to meet the EU 2020 renewable energy target. Sustaining this level past 2026 will be challenging, let alone further increasing it. Although energy production targets can be reached, the management intensification required will degrade the near-term carbon balance of the forestry sector, compared to continuing present-day management. Even for the best-performing intensification strategy, i.e., reducing the harvest diameter of actively managed stands, the carbon benefits would only become apparent after 2040. The carbon balance of a strategy putting abandoned forests back into production would only break even by 2055; the carbon balance from increasing thinning in managed but untended stands would not break even within the studied time periods, i.e. 2015–2045 and 2046–2100. Owing to the temporal dynamics in the components of the carbon balance, i.e., the biomass stock in the forest, the carbon stock in wood products, and substitution benefits, the merit order of the examined strategies varies over time.

Conclusions

No single solution was found to improve the carbon balance of the forestry sector by 2040 in a way that also met energy targets. We therefore searched for the intensification scenario that produces energy at the lowest carbon cost. Reducing rotation time of actively managed stands is slightly more efficient than targeting harvest-delayed stands, but in both cases, each unit of energy produced has a carbon cost that only turns into a benefit between 2060 and 2080.
  相似文献   
125.
126.
The major scope of the study is the assessment of landslide susceptibility of Flysch areas including the Penninic Klippen in the Vienna Forest (Lower Austria) by means of Geographical Information System (GIS)-based modelling. A statistical/probabilistic method, referred to as Weights-of-Evidence (WofE), is applied in a GIS environment in order to derive quantitative spatial information on the predisposition to landslides. While previous research in this area concentrated on local geomorphological, pedological and slope stability analyses, the present study is carried out at a regional level. The results of the modelling emphasise the relevance of clay shale zones within the Flysch formations for the occurrence of landslides. Moreover, the distribution of mass movements is closely connected to the fault system and nappe boundaries. An increased frequency of landslides is observed in the proximity to drainage lines, which can change to torrential conditions after heavy rainfall. Furthermore, landslide susceptibility is enhanced on N-W facing slopes, which are exposed to the prevailing direction of wind and rainfall. Both of the latter geofactors indirectly show the major importance of the hydrological conditions, in particular, of precipitation and surface runoff, for the occurrence of mass movements in the study area. Model performance was checked with an independent validation set of landslides, which are not used in the model. An area of 15% of the susceptibility map, classified as highly susceptible, “predicted” 40% of the landslides.  相似文献   
127.
Synthetic (Mg0.51, Mn0.49)2SiO4 olivine samples are heat-treated at three different pressures; 0, 8 and 12 GPa, all at the same temperature (~500° C). X-ray structure analyses on these single crystals are made in order to see the pressure effect on cation distribution. The intersite distribution coefficient of Mg and Mn in M1 and M2 sites, K D = (Mn/Mg) M1/(Mn/Mg) M2, of these samples are 0.192 (0 GPa), 0.246 (8 GPa) and 0.281 (12 GPa), indicating cationic disordering with pressure. The small differences of cell dimensions between these samples are determined by powder X-ray diffraction. Cell dimensions b and c decrease, whereas a increases with pressure of equilibration. Cell volume decreases with pressure as a result of a large contraction of the b cell dimension. The effect of pressure on the free energy of the cation exchange reaction is evaluated by the observed relation between the cell volume and the site occupancy numbers. The magnitude of the pressure effect on cation distribution is only a fifth of that predicted from the observed change in volume combined with thermodynamic theory. This phenomenon is attributed to nonideality in this solid solution, and nonideal parameters are required to describe cation distribution determined in the present and previous experiments. We use a five-parameter equation to specify the cationic equilibrium on the basic of thermodynamic theory. It includes one energy parameter of ideal mixing, two parameters for nonideal effects, one volume parameter, and one thermal parameter originated from the lattice vibrational energy. The present data combined with some of the existing data are used to determine the five parameters, and the cation distribution in Mg-Mn olivine is described as a function of temperature, pressure, and composition. The basic framework of describing the cationic behavior in olivine-type mineral is worked out, although the result is preliminary: each of the determined parameters is not accurate enough to enable us to make a reliable prediction.  相似文献   
128.
We have observed the time-height variation of the temperature field in the upper troposphere using a Radio Acoustic Sounding System (RASS) which consists of the MU radar and a high-power acoustic transmitter. The fast beam steerability of the MU radar has made it possible to measure temperature profiles in a fairly wide height range in the upper troposphere (5–11 km), even under intense wind conditions. Observations were continued for about 32 hr on 24–26 December, 1986 with a time-height resolution of 30 min and 150 m. During the observation period, the tropospheric jet was so intense that the acoustic wavefronts were severely distorted. Using wind velocity profiles observed by the MU radar we have numerically estimated the propagation of acoustic wavefronts, and further determined favorable pointing directions for the MU radar to receive significant backscattering from refractive index fluctuations produced by the acoustic waves. Conventional radiosonde soundings were carried out every 6 hr, which showed a temperature decrease of 4 K/day in the upper troposphere during the observation period. Temperature profiles taken by RASS agree well with the radiosonde results.  相似文献   
129.
A reconnaissance investigation has been carried out on melting relationships in the system Fe-FeO at pressures up to 25 GPa and temperatures up to 2200° C using an MA-8 apparatus. Limited studies were also made of the Co-CoO and Ni-NiO systems. In the system FeFeO, the rapid exsolution of FeO from liquids during quenching causes some difficulties in interpretation of textures and phase relationships. The Co-CoO and Ni-NiO systems are more tractable experimentally and provide useful analogues to the Fe-FeO system. It was found that the broad field of liquid immiscibility present at ambient pressure in the Co-CoO system had disappeared at 18 GPa, 2200° C and that the system displayed complete miscibility between molten Co and CoO, analogous to the behaviour of the Ni-NiO system at ambient pressure. The phase diagram of the system Fe-FeO at 16 GPa and from 1600–2200° C was constructed from interpretations based on the textures of quenched run products. The solubility of FeO in molten iron is considerably enhanced by high pressures. At 16 GPa, the Fe-FeO eutectic contains about 10–15 mol percent FeO and the eutectic temperature in this iron-rich region of the system occurs at 1700±25° C, some 350° C below the melting point of pure iron at the same pressure. The solubility of FeO in molten Fe increases rapidly as temperature increases from 1700 to 2200° C. A relatively small liquid immiscibility field is present above 1900° C but is believed to be eliminated above 2200° C. This inference is supported by thermodynamic calculations on the positions of key phase boundaries. A single run carried out on an Fe50 FeO50 composition at 25 GPa and 2200° C demonstrated extensive and probably complete miscibility between Fe and FeO liquids under these conditions. The melting point of iron is decreased considerably by solution of FeO at high pressures; moreover, the melting point gradient (dP/dT) of the Fe-FeO eutectic is much smaller than that of pure iron and is also smaller than that of mantle pyrolite under the P, T conditions studied. These characteristics make it possible for melting of metal phase and segregation of the core to proceed within the Earth under conditions where most of the mantle remains below solidus temperatures. Under these conditions, the core would inevitably contain a large proportion of dissolved FeO. It is concluded therefore, that oxygen is likely to be the principal light element in the core. The inner core may not be composed of pure iron, as often proposed. Instead, it may consist of a crystalline oxide solid solution (Ni, Fe)2O.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号