首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
  国内免费   2篇
大气科学   5篇
地球物理   16篇
地质学   10篇
海洋学   13篇
天文学   4篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有48条查询结果,搜索用时 156 毫秒
41.
42.
Crystalline enstatite (MgSiO3) grains were produced by the simultaneous evaporation of SiO grains and Mg vapor in a plasma field. The MgSiO3 grains were spherical or needlelike. The necessity of a plasma field in astromineralogy is suggested in the present study.  相似文献   
43.
Regeneration of silicate in the Japan Sea, an example of semi-closed sea, was studied. In the Japan Sea Proper Water the apparent regenerative ratio of the nutrients was determined to be:O C N P Si=–289 (116)14.3181.It was assumed that the dissolved silicate present in sea water is grouped into three fractions; 1)preformed silicate of conservative nature, 2)oxidative silicate which dissolves in oxidation process of organisms with consumption of oxygen, and 3)non-oxidative silicate which dissolves without oxygen consumption. The dissolution rate ofnon-oxidative silicate in the Japan Sea Proper Water was estimated to be 0.07g-at. Si/l/yr from the data ofAOU values and assumed rates of oxygen consumption. This dissolution rate ofnon-oxidative silicate agreed with that obtained in the deep Pacific by the vertical advection diffusion model byKido andNishimura (1972).  相似文献   
44.
An analysis of surface current data obtained from 2002 to 2005 using long-range high-frequency radar provides the first evidence for the presence of biweekly (11–14 day) periodic variations of the Kuroshio axis northeast of Taiwan. This analysis clarifies the spatiotemporal characteristics of these variations and reveals that cyclonic/anticyclonic eddies propagating along the shelf slope from the vicinity of the deep channel east of Taiwan induce these variations northeast of Taiwan. The behavior of the cyclonic/anticyclonic eddies on the shelf slope is well explained by 2nd-mode interior shelf waves advected by the Kuroshio's mean flow. Remote effects from the vicinity of the deep channel east of Taiwan, or from outside the East China Sea, are believed to play an important role in the generation of these biweekly periodic variations of the Kuroshio axis northeast of Taiwan. Moreover, on the shelf slope, these variations cause an onshore current across the shelf slope, suggesting topographically controlled upwelling. Therefore, the biweekly periodic variations of the Kuroshio axis northeast of Taiwan might contribute not only to the onshore transport of Kuroshio surface water but also to transport nutrient-rich Kuroshio subsurface water onto the shelf in the East China Sea.  相似文献   
45.
Sumisu volcano was the site of an eruption during 30–60 ka that introduced ∼48–50 km3 of rhyolite tephra into the open-ocean environment at the front of the Izu-Bonin arc. The resulting caldera is 8 × 10 km in diameter, has steep inner walls 550–780 m high, and a floor averaging 900 m below sea level. In the course of five research cruises to the Sumisu area, a manned submersible, two ROVs, a Deep-Tow camera sled, and dredge samples were used to study the caldera and surrounding areas. These studies were augmented by newly acquired single-channel seismic profiles and multi-beam seafloor swath-mapping. Caldera-wall traverses show that pre-caldera eruptions built a complex of overlapping dacitic and basaltic edifices, that eventually grew above sea level to form an island about 200 m high. The caldera-forming eruption began on the island and probably produced a large eruption column. We interpret that prodigious rates of tephra fallback overwhelmed the Sumisu area, forming huge rafts of floating pumice, choking the nearby water column with hyperconcentrations of slowly settling tephra, and generating pyroclastic gravity currents of water-saturated pumice that traveled downslope along the sea floor. Thick, compositionally similar pumice deposits encountered in ODP Leg 126 cores 70 km to the south could have been deposited by these gravity currents. The caldera-rim, presently at ocean depths of 100–400 m, is mantled by an extensive layer of coarse dense lithic clasts, but syn-caldera pumice deposits are only thin and locally preserved. The paucity of syn-caldera pumice could be due to the combined effects of proximal non-deposition and later erosion by strong ocean currents. Post-caldera edifice instability resulted in the collapse of a 15° sector of the eastern caldera rim and the formation of bathymetrically conspicuous wavy slump structures that disturb much of the volcano’s surface.  相似文献   
46.
Flow fluctuations inside an anticyclonic eddy in summertime Funka Bay were examined using three moorings and hydrographic data. The flow pattern above a sharp pycnocline with a concave isopycnal structure during the mooring period was characterized by high mean kinetic energy and relatively low eddy kinetic energy. The ratios of eddy to mean kinetic energy were equal to or less than one, and the mean flow field and isopycnal structure indicated the existence of a stable anticyclonic eddy above the sharp pycnocline under approximate geostrophic balance. Larger flow fluctuations with periods longer than 7 days were dominant inside the eddy. The low-frequency flow fluctuations are accompanied by north to northeastward movement of the eddy with deepening of the pycnocline and spin-up of the anticyclonic circulation. The wind field over Funka Bay is characterized by bay-scale wind fluctuations. The bay-scale winds are greatly influenced by the land topography around Funka Bay, resulting in non-uniform structure with significant wind stress curl. The bay-scale wind fluctuations are termed “locally modified wind” in the present study. The locally modified wind has a negative (positive) wind stress curl in the central–northeastern (southwestern) region of Funka Bay. The north to northeastward movement of the eddy is caused by horizontal non-uniform supply of vorticity from the locally modified wind forcing by the Ekman pumping process. Through this process, the anticyclonic circulation is enhanced (weakened) in the central–northeastern (southwestern) part of the eddy, resulting in the eddy moving north to northeastward with the pycnocline deepening and spin-up of the anticyclonic circulation. The locally modified wind forcing induces low-frequency flow fluctuations through the movement of the eddy in summertime Funka Bay.  相似文献   
47.
High-pressure synthesis of a new SrSi2O5 phase was performed at 16 GPa and 900°C by using a Kawai-type multianvil apparatus. The powder X-ray diffraction pattern of the compound was analyzed by Rietveld refinement based on the structure of a high-pressure polymorph of BaGe2O5, BaGe2O5 III. The structure is orthorhombic with space group Cmca and cell parameters of a = 5.2389(1) Å, b = 9.2803(2) Å, c = 13.4406(1) Å, V=653.46(2) Å 3 (Z=8, calc=4.549 g/cm3). The structure consists of layers containing SiO6 octahedra and SiO4 tetrahedra. In a unit layer, oxygen and strontium atoms are arranged in an approximation to hexagonal close-packing. The strontium atom is accommodated in a 12-coordinated site. Each SiO6 octahedron shares four corners with SiO4 tetrahedra and the other two corners with another SiO6 octahedra. The SiO6 octahedra are linked to each other to form SiO6 chains along the a-axis. This is the first known example of a silicate with a BaGe2O5 III-type structure.  相似文献   
48.
Soil pipes (continuous macropores expanding laterally in the soil subsurface) are a key factor controlling hillslope water cycles and sediment transport. Soil pipes usually enhance slope stability under rainfall events through their high water drainage ability, and pipe clogging by sediments is regarded as a risk for slope failure. In this study, we conducted a bench-scale pipe clogging experiment to clarify the effect of air mobility in soil pipes on water flow and water pressure build-up in the slope at the clogged point. Before pipe clogging, the soil pipe drained rainwater effectively and lowered the groundwater table. After the pipe clogging event, the mobility of air in the soil pipe before the clogging determined the water flow in the slope. When the air in the soil pipe connected to the atmosphere and moved freely, the water level in the soil pipe increased at the pipe clogging, and water pressure build-up was limited near the pipe outlet. On the other hand, when air in the soil pipe was entrapped by the clogging, water pressure suddenly increased, and the groundwater table of the whole slope rose correspondingly. This study clearly demonstrated the importance of pipe morphology with respect to air connectivity between the pipe and atmosphere to elucidate the water flow and slope stability during the pipe clogging event. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号