首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
测绘学   2篇
大气科学   1篇
地球物理   12篇
地质学   24篇
海洋学   4篇
天文学   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1988年   1篇
  1966年   1篇
  1956年   1篇
排序方式: 共有45条查询结果,搜索用时 62 毫秒
11.
The John’s creek valley (Johnsbachtal) is presented as a long-term, interdisciplinary cooperation platform in upper Styria (Austrian Alps) that brings together the interests and knowledge of persons with different backgrounds (scientists, teachers, students, as well as local actors and the population) with the central aim to generate mutual benefit for all involved parties. It covers an area of around 65 km2 with elevations between 600 and 700 m in the valley to over 2,300 m in the summit regions. Annual mean temperature ranges from approximately 8 °C in the lower elevations of the valley to below 0 °C in the summit regions. Annual precipitation mounts to values of 1,500 mm and more than 1,800 mm in the lower elevations and summit regions, respectively. To allow for a long-term monitoring of the complex meteorological and hydrological conditions in the area, a hydroclimatological monitoring network has been installed that is described in detail in this paper. A special characteristic of the installed meteorological stations is that they cover a large range of altitudes and, therefore, allow to capture the gradients in meteorological variables induced by the complex Alpine topography. Furthermore, the hydroclimatological monitoring network in John’s creek valley is largely independent of regular third-party project funding, and therefore, not temporarily limited in its existence. A number of catchment research activities that cover a variety of disciplines (e.g., climatology, hydrology, (hydro)geology, geomorphology) and that largely benefit from the hydroclimatological data recorded in John’s creek valley are presented together with preliminary results. The latter include spatial distributions of meteorological and hydrological variables (e.g., precipitation, evapotranspiration and snowmelt) calculated for the test site using the hydrometeorological model AMUNDSEN. Furthermore, the results of hydrogeological investigations that have been carried out at the Etzbach spring are presented and discussed.  相似文献   
12.
Truncation of the distribution of ground-motion residuals   总被引:4,自引:3,他引:1  
Recent studies to assess very long-term seismic hazard in the USA and in Europe have highlighted the importance of the upper tail of the ground-motion distribution at the very low annual frequencies of exceedance required by these projects. In particular, the use of an unbounded lognormal distribution to represent the aleatory variability of ground motions leads to very high and potentially unphysical estimates of the expected level of shaking. Current practice in seismic hazard analysis consists of truncating the ground-motion distribution at a fixed number (ε max) of standard deviations (σ). However, there is a general lack of consensus regarding the truncation level to adopt. This paper investigates whether a physical basis for choosing ε max can be found, by examining records with large positive residuals from the dataset used to derive one of the ground-motion models of the Next Generation Attenuation (NGA) project. In particular, interpretations of the selected records in terms of causative physical mechanisms are reviewed. This leads to the conclusion that even in well-documented cases, it is not possible to establish a robust correlation between specific physical mechanisms and large values of the residuals, and thus obtain direct physical constraints on ε max. Alternative approaches based on absolute levels of ground motion and numerical simulations are discussed. However, the choice of ε max is likely to remain a matter of judgment for the foreseeable future, in view of the large epistemic uncertainties associated with these alternatives. Additional issues arise from the coupling between ε max and σ, which causes the truncation level in terms of absolute ground motion to be dependent on the predictive equation used. Furthermore, the absolute truncation level implied by ε max will also be affected if σ is reduced significantly. These factors contribute to rendering a truncation scheme based on a single ε max value impractical.  相似文献   
13.
A Mw 7.9 earthquake event occurred on 15 August 2007 off the coast of central Peru, 60 km west of the city of Pisco. This event is associated with subduction processes at the interface of the Nazca and South American plates, and was characterised by a complex source mechanism involving rupture on two main asperities, with unilateral rupture propagation to the southeast. The rupture process is clearly reflected in the ground motions recorded during this event, which include two separate episodes of strong shaking. The event triggered 18 accelerographic stations; the recordings are examined in terms of their characteristics and compared to the predictions of ground-motion prediction equations for subduction environments, using the maximum-likelihood-based method of Scherbaum et al. (Bull Seismol Soc Am 94(6):2164–2185, 2004). Additionally, macroseismic observations and damage patterns are examined and discussed in the light of local construction practices, drawing on field observations gathered during the post-earthquake reconnaissance missions.  相似文献   
14.
15.
The origin of third-order depositional sequences remains debatable, and in many cases it is not clear whether they were controlled by tectonic activity and/or by eustatic sea-level changes. In Oxfordian and Berriasian–Valanginian carbonate-dominated sections of Switzerland, France, Germany and Spain, high-resolution sequence-stratigraphic and cyclostratigraphic analyses show that the sedimentary record reflects Milankovitch cyclicity. Orbitally induced insolation changes translated into sea-level fluctuations, which in turn controlled accommodation changes. Beds and bedsets formed in rhythm with the precession and 100-kyr eccentricity cycles, whereas the 400-kyr eccentricity cycle contributed to the creation of major depositional sequences. Biostratigraphical data allow the correlation of many of the 400-kyr sequence boundaries with third-order sequence boundaries recognized in European basins. This implies that climatically controlled sea-level changes contributed to the formation of third-order sequences. Furthermore, this cyclostratigraphical approach improves the relative dating of stratigraphic intervals.  相似文献   
16.
The Oxfordian sedimentary successions studied in the Swiss Jura, in Normandy, and in the Soria and Cazorla regions of Spain display complex facies evolution and stacking patterns. Based on biostratigraphy and absolute age dating, it is suggested that the shallow-water depositional settings in the Jura, Normandy, and the Soria region as well as the deeper-water environments in the Cazorla region, recorded climatic and sea-level fluctuations in the Milankovitch frequency band. Beds and bedsets corresponding to 20-, 100-, and 400-ka cyclicities can be identified. Facies evolution inside such small-scale sequences and also in the larger sequences of million-year scale is interpreted in terms of sequence stratigraphy. Superposition of high-frequency cyclicity on a longer-term sea-level trend led to multiplication of diagnostic surfaces: sequence-boundary and maximum-flooding zones in the large-scale sequences can thus be defined. These zones are correlated between closely spaced sections, but also from the Swiss Jura to Normandy and to Spain. The narrow time lines given by Milankovitch cyclicity then allow comparison of facies evolution in the different regions on a scale of 100 ka or less. By filtering out local effects of differential subsidence and sediment supply, a long-term sea-level curve valid for the northwestern margin of the Tethys ocean can be reconstructed for the Middle to Late Oxfordian. Differential subsidence is implied from varying thicknesses of the sequences as well as from the distribution of siliciclastics which have been channelized through depressions. Tilted blocks, reduced sedimentation, or increased input of siliciclastics appearing at the same time in all study areas point to a widespread regional tectonic event. Distribution through the sequences of climate-dependent facies components such as corals, ooids, palynomorphs, and siliciclastics indicates that climate changes were dependent on atmospheric circulation patterns and thus on paleolatitude. Rainy periods and related increase of siliciclastics in the Swiss Jura were more abundant during low sea-level stands, whereas in the Soria region they coincided with sea-level highs. Through the combination of high-resolution sequence stratigraphy and cyclostratigraphy, and supported by biostratigraphy and absolute dating, it becomes possible to analyze paleoenvironmental changes in a very narrow time framework.  相似文献   
17.
Climatic, oceanographic and ecological changes that control the formation and deposition of sediment in shallow and deep depositional environments commonly occur with periodicities of a few 10 000 years. Consequently, in order to interpret sedimentary sequences in the geological past, high time resolution is required. This is best obtained by cyclostratigraphy. Three sections have been studied in the Oxfordian of north-eastern Spain: one represents a shallow, siliciclastic-carbonate platform with repetitive subaerial exposures, one an intraplatform basin with sponge bioherms, and one a swell where iron ooids and glauconite formed. The platform section displays a well-defined stacking pattern of depositional sequences; the deeper-water sections are well dated by ammonites. The correlation between the three sections is a best-fit solution integrating biostratigraphy, sequence stratigraphy and cyclostratigraphy. It is concluded that the small-scale depositional sequences formed in tune with the 100-ka orbital eccentricity cycle. An additional factor was differential subsidence that ruled basin morphology.  相似文献   
18.
The Lluta collapse of northern Chile is one of the oldest recognizable landslides (>2.5 Ma) in a hyperarid continental setting. This paper develops a conceptual landscape evolution model of the Lluta collapse and analyzes the controls of mass wasting and erosion/sediment transport in channels on the topographic development. The data presented here imply that high relief along a topographic scarp, surface fracturing, elevated groundwater table during a more humid climate and an aquitard underlying permeable ignimbrites are preparatory causal factors for landsliding >2.5 Ma ago. A strong seismic event then possibly resulted in the displacement of ca. 26 km3 of mass. Subsequent modification of the landslide scar occurred by backward erosion, resulting in the establishment of a dendritic drainage network and the removal of an additional ca. 24 km3 of material. It appears that this mass was produced by mass wasting in the headwaters, and exported by high-concentrated debris flows in channels. In addition, morphometric information suggest that whereas the geometrical development of the Lluta collapse has been controlled by gravitational mass wasting, the rates of the development of this geomorphic unit have been limited by the export rates of mass and hence by the transport capacity of the flows.  相似文献   
19.
Marine Geophysical Research - This study of subaquatic slope failures in Lake Lucerne, central Switzerland, presents a new concept for evaluating basin-wide slope stability through time as a...  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号