首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   9篇
  国内免费   7篇
测绘学   31篇
大气科学   34篇
地球物理   73篇
地质学   204篇
海洋学   25篇
天文学   54篇
综合类   8篇
自然地理   11篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   9篇
  2019年   8篇
  2018年   36篇
  2017年   30篇
  2016年   25篇
  2015年   23篇
  2014年   28篇
  2013年   32篇
  2012年   31篇
  2011年   27篇
  2010年   25篇
  2009年   28篇
  2008年   13篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   7篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有440条查询结果,搜索用时 234 毫秒
61.
Interfacial instability of sand patterns induced by turbulent shear flow   总被引:1,自引:0,他引:1  
When a turbulent shear flow above a plane sand surface entrains sand grains,it generates a variety of sand patterns.Fluvial sand forms two major interfacial patterns:meso-scale dunes and antidunes,and large-scale bars.Measurements have evidenced that under erosive conditions,meso-scale patterns either change to or coexist with large-scale patterns.However,it remains elusive what exactly drives the switching of interfacial patterns and how the switching occurs.Here,we showdcombing a flow model with a grain transport model,allowing for both the surface and suspended sand fluxes dthat the switching of patterns emerges from the shear-driven complex feedback between grain transport and topographic perturbations.The switching predominantly depends on the magnitudes of the Rouse number and the grain size to undisturbed flow depth ratio.The model offers quantitative predictions of the maximum amplification of sand patterns and unveils a new attraction erepulsion phenomenon.  相似文献   
62.
We study the effects of temperature on strange stars. It is found that the maximum mass of the star decreases with the increase of temperature, as at high temperatures the equations of state become softer. Moreover, if the temperature of a strange star increases, keeping its baryon number fixed, its gravitational mass increases and its radius decreases. This leads to a limiting temperature, where it turns into a black hole. These features are the result of a combined effect of the change of gluon mass and the quark distribution with temperature. We report on a new type of radial oscillation of strange stars, driven by what we call 'chromothermal' instability. We also discuss the relevance of our findings in the astrophysics of core collapse supernovae and gamma-ray bursts.  相似文献   
63.
Armagh Observatory installed a sky monitoring system consisting of two wide angle (90° × 52°) and one medium angle (52° × 35°) cameras in July 2005. The medium angle camera is part of a double station setup with a similar camera in Bangor, ∼73 km ENE of Armagh. All cameras use UFOCapture to record meteors automatically; software for off-line photometry, astrometry and double station calculations is currently being developed. The specifications of the cameras and cluster configuration are described in detail. 2425 single station meteors (1167, 861 and 806 by the medium-angle and the wide-angle cameras respectively) and 547 double station meteors were recorded during the months July 2005 to Dec 2006. About 212 double station meteors were recorded by more than one camera in the cluster. The effects of weather conditions on camera productivity are discussed. The distribution of single and double station meteor counts observed for the years 2005 and 2006 and calibrated for weather conditions are presented.  相似文献   
64.
In fluvial sedimentology, bed sediment entrainment by streamflow has a decisive role in controlling several fluvial processes. Owing to its huge practical importance, the subject has been painstakingly explored for over a century. However, a detailed understanding of the mechanism of the bed sediment entrainment phenomenon achieved hitherto is far from complete. The central theme of bed sediment entrainment is occupied by the sediment entrainment threshold, which varies enormously in its qualitative definition, identification and quantification encompassing a broad range of spatiotemporal scales. This article presents the state of the science of the entrainment of non‐cohesive bed sediments under a steady‐unidirectional streamflow. It begins with the diverse definitions and representations of the entrainment threshold criterion from both qualitative and quantitative perspectives, scrutinising its suitability and ambit of applicability. Then, the effects of energetic factors that drive the entrainment threshold criterion are critically appraised. The indispensable mechanisms of bed sediment entrainment, including the theoretical background and modelling strategies, the role of turbulent bursting phenomenon and the phenomenological perspective into the origin of the scaling laws of sediment entrainment, are explained. Throughout the article, special emphasis is given to the strengths and weaknesses of the current state of the science. In addition, a deliberate attempt is made to invoke the thought‐provoking ideas on the multifarious features of bed sediment entrainment. Finally, the innovative perspectives on the bed sediment entrainment are provided and the concluding remarks are made, elucidating the major challenges and suggesting the prospective ways to resolve them as a future scope of research.  相似文献   
65.
This study aims to illustrate how remotely sensed oceanic variables and fishing operations data can be used to predict suitable habitat of fishery resources in Geographic Information System. We used sea surface height anomaly (SSHa), sea surface temperature (SST), chlorophyll concentration (CC), photosynthetically active radiation (PAR) and fishing depth as predictor variables. Fishery data of Indian squid (Loligo spp.) and catfish (Tachysurus spp.) for study period (1998–2004) were segregated randomly to create training and validation. Catch was normalized into Catch per unit Effort (kg h?1). Generalized additive modelling was performed on training data and then tested on validation data. Suitable ranges of SST, CC, SSHa and PAR for different species distributions were derived and integrated to predict their spatial distributions. Results indicated good match between predicted and actual catch. Monthly probability maps of predicted habitat areas coincide with high catch of the particular month for the study period.  相似文献   
66.
Summary ?A methodology has been developed to assimilate satellite-measured rainfall during the initial phase of model integration for extended range monsoon prediction. The vertical profiles of latent heating corresponding to different rain rates have been derived from the model statistics. These heating rates have been assimilated through nudging in the thermodynamics equation of the model. This procedure of assimilating observed heating has corrected the simulation of heating location in the model and consequently removed the anomalous sinking motion over Indian landmass. With the correction of vertical circulation, both mean July rainfall over India and the distribution have improved. Interannual variability has been brought out for the years 1987 and 1988. In view of the availability of rainfall profile from Tropical Rain Measuring Mission (TRMM) there is a scope of adopting this method of assimilating observed rainfall, for extended range monsoon prediction. Received February 12, 1999/Revised May 4, 1999  相似文献   
67.
A three-dimensional regional ocean model is used to examine the impact of positive Indian ocean dipole (pIOD) events on the coastal upwelling features at the southwest coast of India (SWCI). Two model experiments are carried out with different surface boundary conditions that prevailed in the normal and pIOD years from 1982 to 2010. Model experiments demonstrate the weakening of coastal upwelling at the SWCI in the pIOD years. The reduced southward meridional wind stress off the SWCI leads to comparatively lower offshore Ekman transport during August–October in the pIOD years to that in normal years. The suppressed coastal upwelling results in warmer sea surface temperature and deeper thermocline in the pIOD years during June–September. The offshore spatial extent of upwelled colder (<?22 °C) water was up to 75.5° E in August–September in normal years that was limited up to 76.2° E in pIOD years. The heat budget analysis reveals the decreased contribution of vertical entrainment process to the mixed layer cooling in pIOD years which is almost half of that of normal years in October. The net heat flux term shows warming tendency during May–November with a higher magnitude (+?0.4 °C day?1) in normal years than pIOD years (+?0.28 °C day?1). The biological productivity is found to reduce during the pIOD years as the concentration of phytoplankton and zooplankton decreases over the region of coastal upwelling at SWCI. Nitrate concentration in the pIOD years dropped by half during August–September and dropped by an order of magnitude in October as compared to its ambient concentration of 13 μmol L?1 in normal years.  相似文献   
68.
Space-borne ocean-colour remote sensor-detected radiance is heavily contaminated by solar radiation backscattered by the atmospheric air molecules and aerosols. Hence, the first step in ocean-colour data processing is the removal of this atmospheric contribution from the sensor-detected radiance to enable detection of optically active oceanic constituents e.g. chlorophyll-a, suspended sediment etc. In standard atmospheric correction procedure for OCEANSAT-1 Ocean Colour Monitor (OCM) data, NIR bands centered at 765 and 865 nm wavelengths were used for aerosol characterization. Due to high absorption by water molecules, ocean surface in these two wavelengths acts as dark background, therefore, sensor detected radiance can be assumed to have major contribution from atmospheric scattering. For coastal turbid waters this assumption of dark surface fails due to the presence of highly scattering sediments which causes sufficient water-leaving radiance in NIR bands and lead to over-estimation of aerosol radiance resulting in negative water leaving radiance for λ < 700 nm. In the present study, for the turbid coastal waters in the northern Bay of Bengal, the concept of spatial homogeneity of aerosol and water leaving reflectance has been applied to perform atmospheric correction of OCAEANSAT-1 OCM data. The results of the turbid water atmospheric correction have also been validated using in-situ measured water-leaving radiance. Comparison of satellite derived water-leaving radiance for five coastal stations with in-situ measured radiance spectra, indicates an improvement over the standard atmospheric correction algorithm giving physically realistic and positive values. Root Mean Square Error (RMSE) between the in-situ measured and satellite derived water leaving radiance for wavelengths 412 nm, 443 nm, 490 nm, 512 nm and 555 nm was found to be 1.11, 0.718, 0.575, 0.611 and 0.651%, respectively, using standard atmospheric correction procedure. By the use of spatial homogeneity concept, this error was reduced to 0.125, 0.173, 0.176, 0.225, and 0.290 and the correlation coefficient arrived at 0.945, which is an improvement over the standard atmospheric correction procedure.  相似文献   
69.
Landslide susceptibility assessment using GIS has been done for part of Uttarakhand region of Himalaya (India) with the objective of comparing the predictive capability of three different machine learning methods, namely sequential minimal optimization-based support vector machines (SMOSVM), vote feature intervals (VFI), and logistic regression (LR) for spatial prediction of landslide occurrence. Out of these three methods, the SMOSVM and VFI are state-of-the-art methods for binary classification problems but have not been applied for landslide prediction, whereas the LR is known as a popular method for landslide susceptibility assessment. In the study, a total of 430 historical landslide polygons and 11 landslide affecting factors such as slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to rivers, distance to lineaments, and rainfall were selected for landslide analysis. For validation and comparison, statistical index-based methods and the receiver operating characteristic curve have been used. Analysis results show that all these models have good performance for landslide spatial prediction but the SMOSVM model has the highest predictive capability, followed by the VFI model, and the LR model, respectively. Thus, SMOSVM is a better model for landslide prediction and can be used for landslide susceptibility mapping of landslide-prone areas.  相似文献   
70.
Real‐time hybrid simulation (RTHS) is increasingly being recognized as a powerful cyber‐physical technique that offers the opportunity for system evaluation of civil structures subject to extreme dynamic loading. Advances in this field are enabling researchers to evaluate new structural components/systems in cost‐effective and efficient ways, under more realistic conditions. For RTHS, performance metric clearly needs to be developed to predict and evaluate the accuracy of various partitioning choices while incorporating the dynamics of the transfer system, and computational/communication delays. In addition, because of the dynamics of the transfer system, communication delays, and computation delays, the RTHS equilibrium force at the interface between numerical and physical substructures is subject to phase discrepancy. Thus, the transfer system dynamics must be accommodated by appropriate actuator controllers. In this paper, a new performance indicator, predictive performance indicator (PPI), is proposed to assess the sensitivity of an RTHS configuration to any phase discrepancy resulting from transfer system dynamics and computational/communication delays. The predictive performance indicator provides a structural engineer with two sets of information as follows: (i) in the absence of a reference response, what is the level of fidelity of the RTHS response? and (ii) if needed, what partitioning adjustments can be made to effectively enhance the fidelity of the response? Moreover, along with the RTHS stability switch criterion, this performance metric may be used as an acceptance criteria for conducting single‐degree‐of‐freedom RTHS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号