首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   11篇
  国内免费   3篇
测绘学   6篇
大气科学   29篇
地球物理   77篇
地质学   144篇
海洋学   35篇
天文学   21篇
自然地理   29篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   11篇
  2016年   11篇
  2015年   8篇
  2014年   6篇
  2013年   26篇
  2012年   8篇
  2011年   21篇
  2010年   10篇
  2009年   12篇
  2008年   9篇
  2007年   16篇
  2006年   2篇
  2005年   10篇
  2004年   11篇
  2003年   12篇
  2002年   8篇
  2001年   3篇
  2000年   12篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   5篇
  1980年   6篇
  1979年   4篇
  1978年   10篇
  1977年   4篇
  1976年   3篇
  1973年   2篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1921年   2篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
41.
42.
43.
A significant difference exists between estimates of contaminant atmospheric transport and dispersion calculated by an ensemble-averaged model and the turbulent details of any particular atmospheric transport and dispersion realization. In some cases, however, it is important to be able to make inferences of these realizations using ensemble-averaged models. It is possible to make such inferences if there are sensors in the field to report contaminant concentration observations. Any information determined about the atmospheric transport and dispersion realization can then be assimilated into a forecast model. This approach can enhance the accuracy of the atmospheric transport and dispersion forecast of a particular event. This work adopts that approach and reports on a genetic algorithm used to optimize the variational problem. Given contaminant sensor measurements and a transport and dispersion model, one can back-calculate unknown source and meteorological parameters. In this case, we demonstrate the dynamic recovery of unknown meteorological variables, including the transport variables that comprise the “outer variability” (wind speed and wind direction) and the dispersion variables that comprise the “inner variability” (contaminant spread). The optimization problem is set up in an Eulerian grid space, where the comparison of the concentration field variable between the predictions and the observations forms the cost function. The transport and dispersion parameters, which are determined from the optimization, are in Lagrangian space. This calculation is applied to continuous and instantaneous releases in a horizontally homogeneous wind field such as that observed during traditional transport and dispersion field experiments. The method proves to be successful at recovering the unknown transport and dispersion parameters for a numerical experiment.  相似文献   
44.
Key limitations of integrated assessment models (IAMs) are their highly stylized and aggregated representation of climate damages and associated economic responses, as well as the omission of specific investments related to climate change adaptation. This paper proposes a framework for modeling climate impacts and adaptation that clarifies the relevant research issues and provides a template for making improvements. We identify five desirable characteristics of an ideal integrated assessment modeling platform, which we elaborate into a conceptual model that distinguishes three different classes of adaptation-related activities. Based on these elements we specify an impacts- and adaptation-centric IAM, whose optimality conditions are used to highlight the types of functional relationships necessary for realistic representations of adaptation-related decisions, the specific mechanisms by which these responses can be incorporated into IAMs, and the ways in which the inclusion of adaptation is likely to affect the simulations’ results.  相似文献   
45.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
46.
47.
48.
49.
50.
Summary. The secular variation of the declination, inclination and total force of the geomagnetic field has been plotted for 74 locations in North America. A comparison of the occurrences of maxima and minima in the SV curves from different stations shows little evidence of drift in North America. Although a declination maximum exhibits westward drift up to 1915, all other extrema in declination, inclination and total intensity occur almost simultaneously over a wide area. The major feature of SV in North America appears to be a 4000 nT decrease in the total field since 1850, which may be due to a decrease in the dipole moment coupled with the decay of a large non-dipole anomaly situated under the continent. Short-period changes in the rate of decrease are possibly jerks of the magnetic field. Maximum entropy spectral analysis of all three components of the field indicates periods of 102 and 53 yr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号