首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
  国内免费   1篇
测绘学   4篇
大气科学   15篇
地球物理   16篇
地质学   35篇
海洋学   9篇
天文学   3篇
自然地理   6篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
31.
An accurate tropical cyclone track and intensity forecast is very important for disaster management. Specialized numerical prediction models have been recently used to provide high-resolution temporal and special forecasts. Hurricane Weather Research and Forecast (HWRF) model is one of the emerging numerical models for tropical cyclone forecasting. This study evaluates the performance of HWRF model during the post monsoon tropical cyclone Nilofar on the north Indian Ocean basin. The evaluation uses the best track data provided by the Indian Meteorological Department (IMD) and the Joint Typhoon Warning Centre (JTWC). Cyclone track, central pressure, and wind speed are covered on this evaluation. Generally, HWRF was able to predict the Nilofar track with track error less than 230 km within the first 66 h of forecast time span. HWRF predicted more intense tropical cyclone. It predicted the lowest central pressure to be 922 hPa while it reached 950 hPa according to IMD and 937 hPa according to JTWC. Wind forecast was better as it predicted maximum wind speed of 122 kt while it reached 110 and 115 kt according to IMD and JTWC, respectively.  相似文献   
32.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   
33.
34.
While it is well known that coastal systems respond to long-term sea-level changes, the importance of short-term sea-level dynamics is often overlooked. Year-to-year variability in annual mean sea level along the North American Atlantic coast is part of a regionally consistent pattern that is coupled to low atmospheric pressure and high wind field anomalies persisting over 100s to 1000s of km. These short-term sea-level dynamics, along with long-term sea-level changes are shown to be closely coupled to a set of high resolution excess 210Pb geochronologies from four physiographically distinct salt marsh estuaries surrounding Long Island, NY, USA. However, the degree to which a marsh responds to either forcing depends on its physiographic setting. Accretion and mineral deposition rates in marshes situated in embayments with long fetches and low-tidal ranges are shown to respond most to the short-term dynamically driven changes in sea level. On the other hand, accretion and mineral deposition in a marsh in an embayment with a high-tidal range and reduced fetch best track the long-term changes in mean sea level, presumably because the physiography limited the meteorological drivers of short-term sea-level change. The close coupling between marsh accretion, physiographic setting and indices of sea-level change indicates that these coastal system respond both differently and rapidly (2–5 yr) to climate variability.  相似文献   
35.
An inverse model of the large scale circulation in the South Indian Ocean   总被引:1,自引:0,他引:1  
An overview of the large-scale circulation of the South Indian Ocean (SIO) (10°S-70°S/20°E-120°E) is proposed based on historical hydrographic data (1903-1996) synthesized with a finite-difference inverse model. The in situ density, potential temperature and salinity fields of selected hydrographic stations are projected on the basis of EOFs. Then the EOF coefficients (the projected values) are interpolated on the model grid (1° in latitude, 2° in longitude) using an objective analysis whose spatial correlation functions are fitted to the data set. The resulting fields are the input of the inverse model. This procedure filters out the small-scale features. Twelve modes are needed to keep the vertical structures of the fields but the first three modes are sufficient to reproduce the large-scale horizontal features of the SIO: the Subtropical Gyre, the Weddell Gyre, the different branches of the Antarctic Circumpolar Current.The dynamics is steady state. The estimated circulation is in geostrophic balance and satisfies mass, heat and potential vorticity conservation. The wind and air-sea heat forcing are annual means from ERS1 and ECMWF, respectively.The main features of the various current systems of the SIO are quantified and reveal topographic control of the deep and bottom circulation. The cyclonic Weddell Gyre, mainly barotropic, transports 45 Sv (1 Sv = 106m3/s), and has an eastern extension limited by the southern part of the Antarctic Circumpolar Current.The bottom circulation north of 50°S is complex. The Deep Western Boundary Currents are identified as well as cyclonic recirculations. South east of the Kerguelen Plateau, the bottom circulation is in good agreement with previous water mass analysis. The comparison between some recent regional analysis and the inverse estimation is limited by the model resolution and lack of deep data.The meridional overturning circulation (MOC) is estimated from the finite difference inverse model. Between 26°S and 32°S the reversal of the current deepens and reaches 1400 m at 32°S. The major part of the deep meridional transport at 32°S is located between the African coast and the Madagascar Ridge, carried by the Agulhas Undercurrent. The mean value for this meridional thermohaline recirculation is 8.8 ± 4.4 Sv between 26°S and 32°S. The Agulhas Undercurrent (11 Sv) is associated with a weak Agulhas Current (55 Sv). The MOC is thus trapped in the western margin of the Southwest Indian Ridge. The corresponding vertical velocity along 32°S between 30°E and 42°E is 7.2 × 10−5 ± 8.9 × 10−5 cm s−1. The net meridional heat flux represents −0.53 PW at 18°S and −0.33 PW at 32°S (negative values for southward transports). The intensity of the meridional heat flux is linked to the intensity of the Agulhas Current and to the vertical mixing.  相似文献   
36.
A time series of velocity profile in the upper 150 m of the equatorial Atlantic was gathered at 23W in 2002 within the PIRATA program. It constitutes the first time series of near surface current measurements simultaneous with altimetric data in the equatorial Atlantic. The surface slope anomaly along the equator is computed from satellite altimetry, and, as a proxy for the pressure gradient along the equator, compared with the wind and near surface current data. In a first step, a time series of the surface slope anomaly along the equator in the Atlantic is computed from the 10-year-long TOPEX/Poseidon sea level anomalies. A sensitivity study establishes the robustness of the calculation. Apart from a 15 cm bias, the equatorial sea surface slope anomalies estimated either from TOPEX/Poseidon or from Jason over the 6-month overlap (Feb.-Aug. 2002) do not reveal drastic differences. We produce two sea surface slope anomaly composite time series for 2002 (one with T/P data, the other with Jason data during the commissioning phase) and compare them to the wind and velocity data at 23W. As expected, the near surface velocity and depth of the upper limit of the equatorial undercurrent (EUC) are extremely well correlated with the surface pressure gradient anomaly. 10-year-long time series of altimetry-derived zonal sea surface slope anomaly and ECMWF ERA40 wind stress are also well correlated. They exhibit similar spectral content and similar anomalous years. This is a first step towards a full analysis of the EUC dynamics using altimetry, PIRATA data (near surface current and subsurface thermohaline structure) and model. These initial comparisons reinforce the utility of Jason measurements for continuing the 10-year and highly accurate TOPEX/Poseidon time series for study of equatorial signals.  相似文献   
37.
38.
39.
40.
The Dupi Tila Formation is composed of yellow to light brown medium to very fine moderately hard to loose sandstone, siltstone, silty clay, mudstone and shale with some conglomerates with clasts of petrified wood. The lithofacies of matrix supported conglomerate, trough cross bedded conglomerate, massive sandstone, trough cross bedded sandstone, planar cross bedded sandstone, ripple cross laminated sandstone-siltstone, flaser laminated sandstone-shale, lenticular laminated sandstone-siltstone-shale, parallel laminated sandstone-siltstone, wavy laminated shale, parallel laminated blue shale, and mudstone are delineated within this formation. Based on the grain size, sedimentary structures, water depth and genesis of individual facies, facies are grouped into three types of facies associations like (i) coarse-grained conglomerate facies association in relation to tractive current deposits of alluvial fan set up at the base of litho-succession (FAC), (ii) medium to fine-grained sandstone-siltstone-mudstone facies association or facies association in relation to strong tide (FAT) characterizing the middle part of litho-succession, (iii) very fine-grained sandstone-siltstone-mudstone facies association in relation to less frequent weak tide or heterolithic facies association (FAHL) characterizing upper part of litho-succession and shallow marine facies association (FASM) composing the uppermost litho-succession. Presence of gluconite indicates that the depositional environment was shallow to deep marine. The dominant paleoflow direction during the deposition of Dupi Tila Formation was toward southeast to southwestern direction. The rivers were of braided type at the piedmont alluvial depositional set up at the lower part, which later changed to estuarine-tidal flat type environmental set up in the middle part to upper part and paleo-environment was shallow marine in the uppermost part.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号