首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   17篇
  国内免费   7篇
测绘学   5篇
大气科学   11篇
地球物理   72篇
地质学   73篇
海洋学   56篇
天文学   11篇
综合类   9篇
自然地理   2篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   4篇
  2016年   12篇
  2015年   13篇
  2014年   14篇
  2013年   15篇
  2012年   8篇
  2011年   17篇
  2010年   17篇
  2009年   17篇
  2008年   8篇
  2007年   9篇
  2006年   20篇
  2005年   17篇
  2004年   12篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有239条查询结果,搜索用时 250 毫秒
31.
Sea surface winds and coastal winds, which have a significant influence on the ocean environment, are very difficult to predict. Although most planetary boundary layer (PBL) parameterizations have demonstrated the capability to represent many meteorological phenomena, little attention has been paid to the precise prediction of winds at the lowest PBL level. In this study, the ability to simulate sea winds of two widely used mesoscale models, fifth-generation mesoscale model (MM5) and weather research and forecasting model (WRF), were compared. In addition, PBL sensitivity experiments were performed using Medium-Range Forecasts (MRF), Eta, Blackadar, Yonsei University (YSU), and Mellor–Yamada–Janjic (MYJ) during Typhoon Ewiniar in 2006 to investigate the optimal PBL parameterizations for predicting sea winds accurately. The horizontal distributions of winds were analyzed to discover the spatial features. The time-series analysis of wind speed from five sensitivity experimental cases was compared by correlation analysis with surface observations. For the verification of sea surface winds, QuikSCAT satellite 10-m daily mean wind data were used in root-mean-square error (RMSE) and bias error (BE) analysis. The MRF PBL using MM5 produced relatively smaller wind speeds, whereas YSU and MYJ using WRF produced relatively greater wind speeds. The hourly surface observations revealed increasingly strong winds after 0300 UTC, July 10, with most of the experiments reproducing observations reliably. YSU and MYJ using WRF showed the best agreements with observations. However, MRF using MM5 demonstrated underestimated winds. The conclusions from the correlation analysis and the RMSE and BE analysis were compatible with the above-mentioned results. However, some shortcomings were identified in the improvements of wind prediction. The data assimilation of topographical data and asynoptic observations along coast lines and satellite data in sparsely observed ocean areas should make it possible to improve the accuracy of sea surface wind predictions.  相似文献   
32.
In horizontally layered soils of different electrical properties, electrical potential distribution becomes complex and the obtained resistivity data may be limited in reflecting the actual soil profile. Thus the objective of this study was to identify the factors that affect resistivity measurement on the cone penetrometer and further investigate the sensitivity of measured resistivity to different types and concentrations of contaminants at the subsurface level. First, a theoretical resistivity equation was derived to provide a means of computing the geometric factor. The effective volume of measurement on the cone penetrometer was investigated and laboratory soil box tests verified the dominance of partially high resistivity regions within the effective volume of measurement over the apparent resistivity. Such effect was found to lead to possible discrepancies between the recorded resistivity data and the actual depth of measurement. Measurements on contaminated soil layers indicated that resistivity cones are efffective in delineating inorganic contaminants in soils of high water contents, and detecting NAPLs floating above the groundwater table provided that soils adjacent to the plume are not dry of water. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
33.
A small goby, Trimma grammistes, was described in detail as the first reliable record from Korea based on 10 specimens (27.8~34.0 mm SL) collected from the coastal waters of Jeju Island. The species is easily differentiated from congeners by having no scales on the predorsal region, VI-I, 10 dorsal fin rays modally, I, 10 anal fin rays, 18 pectoral fin rays, 27~30 longitudinal scales as well as two dark longitudinal bands on the body.  相似文献   
34.
The spatio-temporal variability of submesoscale eddies off southern San Diego is investigated with two-year observations of subinertial surface currents [O(1) m depth] derived from shore-based high-frequency radars. The kinematic and dynamic quantities — velocity potential, stream function, divergence, vorticity, and deformation rates — are directly estimated from radial velocity maps using optimal interpolation. For eddy detection, the winding-angle approach based on flow geometry is applied to the calculated stream function. A cluster of nearly enclosed streamlines with persistent vorticity in time is identified as an eddy. About 700 eddies were detected for each rotation (clockwise and counter-clockwise). The two rotations show similar statistics with diameters in the range of 5–25 km and Rossby number of 0.2–2. They persist for 1–7 days with weak seasonality and migrate with a translation speed of 4–15 cm s−1 advected by background currents. The horizontal structure of eddies exhibits nearly symmetric tangential velocity with a maximum at the defined radius of the eddy, non-zero radial velocity due to background flows, and Gaussian vorticity with the highest value at the center. In contrast divergence has no consistent spatial shape. Two episodic events are presented with other in situ data (subsurface current and temperature profiles, and local winds) as an example of frontal-scale secondary circulation associated with drifting submesoscale eddies.  相似文献   
35.
This study investigates total petroleum hydrocarbon (TPH) removal from residual clayey soil, after a washing procedure, using an electrokinetic process. Eight electrokinetic experiments were carried out to investigate the characteristics of TPH removal. When 0.1 M MgSO4 or 0.1 M NaOH was used as an electrolyte, the electric current rapidly increased within the first 100 or 200 h, respectively. A negatively charged soil surface resulted in a more negative zeta potential and greater electroosmotic flow toward the cathode. Therefore, the accumulated electroosmotic flow (EOF) when using 0.1 M NaOH as the anolyte‐purging solution was higher than when using 0.1 M MgSO4. Although the energy consumption for the two purging solutions was similar, the efficiencies of TPH removal when 0.1 M MgSO4 and 0.1 M NaOH with surfactant were used were 0 and 39%, respectively, because the electroosmotic flow rate increased with TPH removal efficiency. When 5% isopropyl alcohol (IPA) was used as a circulation solution, the electric current increased but the TPH removal was similar to that using water. In terms of energy consumption, the use of a surfactant‐enhanced electrokinetic process with NaOH as electrolyte was effective in removing TPHs from low‐permeability soil.  相似文献   
36.
A variety of soft‐sediment deformation structures formed during or shortly after deposition occurs in the Cretaceous Seongpori and Dadaepo Formations of the southeastern Gyeongsang Basin exposed along coastal areas of southeastern Korean Peninsula for 0.5–2 km. These are mostly present in a fluvial plain facies, with interbedded lacustrine deposits. In this study, the features of different kinds of soft‐sediment deformation structures have been interpreted on the basis of sedimentology of structure‐bearing deposits, comparison with normal sedimentary structures, timing and mechanism of deformation, and triggering mechanisms. The soft‐sediment deformation structures can be classified into four morphological groups: (i) load structures (load casts, ball‐and‐pillow structures); (ii) soft‐sediment intrusive structures (dish‐and‐pillars, clastic dykes, sills); (iii) ductile disturbed structures (convolute folds, slump structures); and (iv) brittle deformation structures (syndepositional faulting, dislocated breccia). The most probable triggering mechanisms resulting in these structures were seismic shocks. These interpretations are based on the following field observations: (i) location of the study area within tectonically active fault zone reactivated several times during the Cretaceous; (ii) deformation structures confined to single stratigraphic levels; (iii) lateral continuity and occurrences of various soft‐sediment deformation structures in the deformed level over large areas; (iv) absence of depositional slope to indicate gravity sliding or slumping; and (v) similarity to the structures produced experimentally. The soft‐sediment deformation structures in the study areas are thus interpreted to have been generated by seismic shocks with an estimated magnitude of M > 5, representing an intermittent record of the active tectonic and sedimentary processes during the development and evolution of two formations from the late Early Cretaceous to the Late Cretaceous.  相似文献   
37.
Abstract

The Hulu Langat basin, a strategic watershed in Malaysia, has in recent decades been exposed to extensive changes in land-use and consequently hydrological conditions. In this work, the impact of Land Use and Cover Change (LUCC) on hydrological conditions (water discharge and sediment load) of the basin were investigated using the Soil and Water Assessment Tool (SWAT). Four land-use scenarios were defined for land-use change impact analysis, i.e. past, present (baseline), future and water conservation planning. The land-use maps, dated 1984, 1990, 1997 and 2002, were defined as the past scenarios for LUCC impact analysis. The present scenario was defined based on the 2006 land-use map. The 2020 land-use map was simulated using a cellular automata-Markov model and defined as the future scenario. Water conservation scenarios were produced based on guidelines published by Malaysia’s Department of Town and Country Planning and Department of Environment. Model calibration and uncertainty analysis was performed using the Sequential Uncertainty Fitting (SUFI-2) algorithm. The model robustness for water discharge simulation for the period 1997–2008 was good. However, due to uncertainties, mainly resulting from intense urban development in the basin, its robustness for sediment load simulation was only acceptable for the calibration period 1997–2004. The optimized model was run using different land-use maps over the periods 1997–2008 and 1997–2004 for water discharge and sediment load estimation, respectively. In comparison to the baseline scenario, SWAT simulation using the past and conservative scenarios showed significant reduction in monthly direct runoff and monthly sediment load, while SWAT simulation based on the future scenario showed significant increase in monthly direct runoff, monthly sediment load and groundwater recharge.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   
38.
This study presents an example of locating Cambrian–Ordovician boundary in the lower Paleozoic carbonate succession in Korea using carbon isotope stratigraphy. The Yeongweol Unit of the lower Paleozoic Joseon Supergroup comprises the Upper Cambrian Wagok Formation and the Lower Ordovician Mungok Formation in the Cambrian–Ordovician transition interval. Conventionally, the boundary was placed at the lithostratigraphic boundary between the two formations. This study reveals that the boundary is positioned in the basal part of the Mungok Formation based on the carbon isotope stratigraphy coupled with biostratigraphic information of conodont and trilobite faunas. The δ13C curve of the Lower Ordovician Mungok Formation shows a similar trend to that of the coeval stratigraphic interval of Argentine Precordillera (Buggisch et al., 2003), suggesting that the δ13C curve of the Mungok Formation reflects the Early Ordovician global carbon cycle.  相似文献   
39.
This study presents the Bottom-hole pressure (BHP) behavior with different wettabilities and the optimal design scheme to effectively inject CO2 into the Gorae-V aquifer. As a result, the injection rate and injectivity were increased as the wettability condition became more water-wet. However, the more wettability condition becomes water-wet, the more the ultimate CO2 injection volume decreases. When the injectivity was 346 ton/day/Mpa at the Gorae-V aquifer, the aquifer can sustain CO2 injection at a rate of 2,425 tons per day over this time period. A design for a complete CCS system was developed based on the existing off-shore pipeline in combination with new on-shore CO2 transport infrastructure, and a pressure of 12.8 MPa is required at the CO2 source to maintain this injection rate.  相似文献   
40.
In order to investigate surf zone hydrodynamics through two-dimensional numerical simulations of nearshore circulation under random wave environment, a nearshore circulation model, SHORECIRC, and a random wave model, SWAN, were combined and utilized. Using this combined model, a numerical simulation of the October 2, 1997 SandyDuck field experiment was performed. For this simulation, field topography and an input offshore spectrum were constructed using observed data sets synchronized with the experiment. The wave-breaking model in SWAN was modified by using breaker parameters varied according to bottom slope. The simulation results were compared with the experimental data, which revealed a well-developed longshore current, as well as with results using other combinations which were SHORECIRC and its original monochromatic wave-driver, and SHORECIRC and the default of SWAN. The results from the novel combined model agreed well with the experimental data. The results of the present simulation also indicate that alongshore field topography influences shear fluctuation of longshore currents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号