首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   6篇
地球物理   33篇
地质学   28篇
海洋学   16篇
天文学   11篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1962年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
31.
Vertical and temporal variations of three-dimensional wind velocity associated with an upper-tropospheric cold vortex-tropopause funnel system were observed by an MST radar in Japan (the MU radar). Marked changes of vertical velocity and horizontal wind direction were found between the inside and outside of the cold vortex. The vertical velocity activity outside the vortex was asymmetric; it was most active in a sector before the vortex. Unsaturated internal gravity waves in their generation stage contribute predominantly to the vertical velocity activity, suggesting that tropospheric occluded cyclones may be a possible source of middle-atmospheric gravity waves through the geostrophic adjustment process.  相似文献   
32.
Marked wavelike variations of the lower stratospheric wind observed on 7–10 May, 1985 by an MST radar in Japan (by the MU radar) are analyzed assuming that they are induced by monochromatic internal inertio-gravity waves. These variations are mainly composed of two modes (periods: 22 and 24 hours), both of which have zonal phase velocities (C X ) slower than the mean westerly wind (). A statistical analysis of the zonal phase velocity shows thatC X above andC X below the tropopause jet stream, which is considered to be a vivid proof of wave selection due to the tropospheric mean flow and upward wave emission from the tropopause jet. A comparison between the MU radar results and routine meteorological observations leads to the conclusion that the marked waves appear when the jet stream takes a maximum wind speed.  相似文献   
33.
The seismic performance of geotechnical works is significantly affected by ground displacement. In particular, soil–structure interaction and effects of liquefaction play major roles and pose difficult problems for engineers. An International Standard, ISO23469, is being developed for addressing these issues in a systematic manner within a consistent framework. The objective of this paper is to give an overview of this International Standard.In this International Standard, the seismic actions are determined through two stages. The first stage determines basic seismic action variables, including the earthquake ground motion at the site, the potential for earthquake-associated phenomena such as liquefaction and induced lateral ground displacement. These basic variables are used, in the second stage, for specifying the seismic actions for designing geotechnical works. In the second stage, the soil–structure interaction plays a major role. Types of analyses are classified based on a combination of static/dynamic analyses and the procedure for soil–structure interaction classified as follows:
– simplified: soil–structure interaction of a global system is modeled as an action on a substructure;
– detailed: soil–structure interaction of a global system is modeled as a coupled system.
Keywords: Design; Geotechnical works; Liquefaction; International Standard; Seismic actions; Seismic hazard analysis  相似文献   
34.
The subduction of “hot” Shikoku Basin and the mantle upwelling related to the Japan Sea opening have induced extensive magmatism during the middle Miocene on both the back-arc and island-arc sides of southwest Japan. The Goto Islands are located on the back-arc side of northwestern Kyushu, and middle Miocene granitic rocks and associated volcanic, hypabyssal, and gabbroic rocks are exposed. The igneous rocks at Tannayama on Nakadori-jima in the Goto Islands consist of gabbronorite, granite, granite porphyry, diorite porphyry, andesite, and rhyolite. We performed detailed geological mapping at a 1:10 000 scale, as well as petrographical and geochemical analyses. We also determined the zircon U–Pb age dating of the igneous rocks from Tannayama together with a granitic rock in Yagatamesaki. The zircon U–Pb ages of the Tannayama igneous rocks show the crystallization ages of 14.7 Ma ± 0.3 Ma (gabbronorite), 15.9 Ma ± 0.5 Ma (granite), 15.4 Ma ± 0.9 Ma (granite porphyry), and 15.1 Ma ± 2.1 Ma (rhyolite). Zircons from the Yagatamesaki granitic rock yield 14.5 Ma ± 0.7 Ma. Considering field relationships, new zircon data indicate that the Tannayama granite formed at ~16–15 Ma, and the gabbronorite, granite porphyry, diorite porphyry, andesite, and subsequently rhyolite formed at 15–14 Ma, which overlaps a plutonic activity of the Yagatamesaki. The geochemical characteristics of the Tannayama igneous rocks are similar to those of the tholeiitic basalts and dacites of Hirado, and the granitic rocks of Tsushima in northwestern Kyushu. This suggests that the Tannayama igneous rocks can be correlated petrogenetically with the igneous rocks in those areas, with all of them generated by the upwelling of hot mantle diapirs during crustal thinning in an extensional environment during the middle Miocene.  相似文献   
35.
The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu–Ogasawara–Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra‐depleted boninite‐series rocks, and less‐depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Chichijima Island Group to the south. On Chichijima, a short hiatus is identified between the Maruberiwan (boninite, bronzite andesite, and dacite) and Asahiyama Formation (quartz dacite and rhyolite). In contrast, these lithologies are interbedded on Nakodojima of the Mukojima Island Group. The stratigraphically lower portion of Mukojima is mainly composed of pillow lava, which is overlain by reworked volcaniclastic rocks in the middle, whereas the upper portion is dominated by pyroclastic rocks. This suggests that volcanic activity now preserved in the Mukojima Island Group records growth of one or more volcanoes, beginning with quiet extrusion of lava under relatively deep water followed by volcaniclastic deposition. These then changed into moderately explosive eruptions that took place in shallow water or above sea level. This is consistent with the uplift of the entire Ogasawara Ridge during the Eocene. Boninites from the Mukojima Island Group are divided into three types on the basis of geochemistry. Type 1 boninites have high SiO2 (>57.0 wt.%) and Zr/Ti (>0.022) and are the most abundant type in both Mukojima and Chichijima Island Groups. Type 2 boninites have low SiO2 (<57.1 wt.%) and Zr/Ti (<0.014). Type 3 boninites have 57.6–60.7 wt.% SiO2 and are characterized by high CaO/Al2O3 (0.9–1.1). Both type 2 and 3 boninites are common on Mukojima but are rare in the Chichijima Island Group.  相似文献   
36.
Abstract

We estimate secular changes in steric sea level in the northeast Pacific Ocean using the 27‐year time series of monthly hydrographic observations for Station PAPA (50°N, 145°W). Linear trends based on the entire data record suggest that steric heights relative to 1000 db are increasing at a rate of 0.93 mm/yr and that 67% of this increase is due to thermosteric changes at depths below 100 m; the smaller halosteric contribution to the steric trend appears to be confined to the upper 100 m. A trend of 0(1 mm/yr) is consistent with estimates of sea level rise based on coastal tide gauge records. However, a critical examination of the results indicates that sea level changes of such small magnitude would be masked by the large (1–10 cm) interannual variability of open ocean steric height. This is verified by recalculation of trends using abridged versions of the data set. We conclude that our trend estimates are still open to question and that the present 27‐year time series is too short to permit accurate resolution of possible climate‐induced changes in global sea level.  相似文献   
37.
38.
It is suggested that the drop out of the 1.2–4 MeV proton flux, observed by the geostationary satellite GMS, was due to the Earthward shift of the particle boundary in all local time. The particle boundary motions are associated with substorm activities.  相似文献   
39.
The strain space multiple mechanism model idealizes the behavior of granular materials based on a multitude of virtual simple shear mechanisms oriented in arbitrary directions. Within this modeling framework, the virtual simple shear stress is defined as a quantity that depends on the contact distribution function as well as the normal and tangential components of inter‐particle contact forces, which evolve independently during the loading process. In other terms, the virtual simple shear stress is an intermediate quantity in the upscaling process from the microscopic level (characterized by the contact distribution and inter‐particle contact forces). The stress space fabric (i.e. the orientation distribution of the virtual simple shear stress) produces macroscopic stress through the tensorial average. Thus, the stress space fabric characterizes the fundamental and higher modes of anisotropy induced in granular materials. Comparing an induced fabric associated with the biaxial shear of plane granular assemblies obtained via a simulation using Discrete Element Method to the strain space multiple mechanism model suggests that the strain space multiple mechanism model has the capability to capture the essential features in the evolution of an induced fabric in granular materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
40.
Abstract— The timing and processes of alteration in the CV parent body are investigated by the analysis of Sr isotopes, major and trace elements, and petrographic type and distribution of the secondary minerals (nepheline and sodalite) in 22 chondrules from the Allende (CV3) chondrite. The Sr isotopic compositions of the chondrules are scattered around the 4.0 Ga reference line on the 87Sr/86Sr evolution diagram, indicating that the chondrules have been affected by late thermal alteration event(s) in the parent body. The degree of alteration, determined for individual chondrules based on the distribution of nepheline and sodalite, is unrelated to the disturbance of the Rb‐Sr system, suggesting that the alteration process that produced nepheline and sodalite is different from the thermal process that disturbed the Rb‐Sr system of the chondrules. Considering the geochemical behavior of Rb and Sr, the main host phase of Sr in chondrules is likely to be mesostasis, which could be most susceptible to late thermal alteration. As there is a poor connection between the alteration degree determined from abundances of nepheline and sodalite and the disturbance of Rb‐Sr isotopic system, we consider the mesostasis to provide a constraint on the late parent body alteration process. From this point of view, 23 mesostasis‐rich chondrules, including those from literature data, were selected. The selected chondrules are closely correlated on the 87Sr/86Sr evolution diagram, with an inferred age of 4.36 ± 0.08 Ga. This correlation would represent an age of the final major Sr isotopic redistribution of the chondrules in the parent body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号