首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49046篇
  免费   606篇
  国内免费   1222篇
测绘学   2029篇
大气科学   3714篇
地球物理   9296篇
地质学   19996篇
海洋学   3288篇
天文学   7837篇
综合类   2203篇
自然地理   2511篇
  2021年   200篇
  2020年   241篇
  2019年   298篇
  2018年   5242篇
  2017年   4506篇
  2016年   3249篇
  2015年   637篇
  2014年   774篇
  2013年   1322篇
  2012年   1756篇
  2011年   3682篇
  2010年   2909篇
  2009年   3493篇
  2008年   2967篇
  2007年   3440篇
  2006年   1183篇
  2005年   1031篇
  2004年   1229篇
  2003年   1161篇
  2002年   963篇
  2001年   662篇
  2000年   689篇
  1999年   579篇
  1998年   575篇
  1997年   524篇
  1996年   398篇
  1995年   394篇
  1994年   408篇
  1993年   313篇
  1992年   309篇
  1991年   258篇
  1990年   312篇
  1989年   270篇
  1988年   254篇
  1987年   278篇
  1986年   237篇
  1985年   317篇
  1984年   339篇
  1983年   330篇
  1982年   314篇
  1981年   270篇
  1980年   283篇
  1979年   216篇
  1978年   206篇
  1977年   216篇
  1976年   185篇
  1975年   190篇
  1974年   177篇
  1973年   167篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The largest reservoir of crustal iodine is found in marine sediments, where it is closely associated with organic material. This presence, together with the existence of a long-lived, cosmogenic radioisotope 129I (t1/2 = 15.7 Ma), make this isotopic system well suited for the study of sediment recycling in subduction zones. Reported here are the results of 129I/I ratios in volcanic fluids, collected during a comprehensive study of fluids and gases in the Central American Volcanic Arc. 129I/I ratios, together with I, Br, and Cl concentrations, were determined in 79 samples from four geothermal centers and a number of crater lakes, fumaroles, hot springs, and surface waters in Costa Rica, Nicaragua, and El Salvador. Geothermal and volcanic fluids were found to have iodine concentrations substantially higher than values in seawater or meteoric waters. 129I/I ratios in most of the geothermal fluids are below the preanthropogenic input ratio of 1500 × 10−15, demonstrating that recent anthropogenic additions are largely absent from the volcanic systems. The majority of the 129I/I ratios are between 500 and 800 × 10−15. These ratios indicate minimum iodine ages between 25 and 15 Ma, in good agreement with the age of subducted sediments in this region. In all four geothermal systems, however, a few samples were found with iodine ages older than 40 Ma—that is, considerably below the expected age range for subducted sediments from the Cocos Plate. These samples probably reflect the presence of iodine derived from sediments in older accreted oceanic terraines. The iodine ages indicate that the magmatic end member for the volcanic fluids originates in the deeper parts of the subducted sediment column, with small additions from older iodine mobilized from the overlying crust. The high concentrations of iodine in geothermal fluids, combined with the observed iodine ages, demonstrate that remobilization in the main volcanic zone (and probably also in the forearc area) is an important part in the overall marine cycle of iodine and similar elements.  相似文献   
992.
One-hundred fluid inclusions in Silurian marine halite were analyzed in order to determine the major-ion composition of Silurian seawater. The samples analyzed were from three formations in the Late Silurian Michigan Basin, the A-1, A-2, and B Evaporites of the Salina Group, and one formation in the Early Silurian Canning Basin (Australia), the Mallowa Salt of the Carribuddy Group. The results indicate that the major-ion composition of Silurian seawater was not the same as present-day seawater. The Silurian ocean had lower concentrations of Mg2+, Na+, and SO42−, and much higher concentrations of Ca2+ relative to the ocean’s present-day composition. Furthermore, Silurian seawater had Ca2+ in excess of SO42−. Evaporation of Silurian seawater of the composition determined in this study produces KCl-type potash minerals that lack the MgSO4-type late stage salts formed during the evaporation of present-day seawater. The relatively low Na+ concentrations in Silurian seawater support the hypothesis that oscillations in the major-ion composition of the oceans are primarily controlled by changes in the flux of mid-ocean ridge brine and riverine inputs and not global or basin-scale, seawater-driven dolomitization. The Mg2+/Ca2+ ratio of Silurian seawater was ∼1.4, and the K+/Ca2+ ratio was ∼0.3, both of which differ from the present-day counterparts of 5 and 1, respectively. Seawaters with Mg2+/Ca2+ <2 facilitate the precipitation of low-magnesian calcite (mol % Mg < 4) marine ooids and submarine carbonate cements whereas seawaters with Mg2+/Ca2+ >2 (e.g., modern seawater) facilitate the precipitation of aragonite and high-magnesian calcite. Therefore, the early Paleozoic calcite seas were likely due to the low Mg2+/Ca2+ ratio of seawater, not the pCO2 of the Silurian atmosphere.  相似文献   
993.
The relationships between electrical conductivity, temperature, salinity, and density are studied for brackish Lake Issyk-Kul. These studies are based on a newly determined major ion composition, which for the open lake shows a mean absolute salinity of 6.06 g kg−1. The conductivity-temperature relationship of the lake water was determined experimentally showing that the lake water is about 1.25 times less conductive than seawater diluted to the same absolute salinity as that of the lake water. Based on these results, an algorithm is presented to calculate salinity from in-situ conductivity measurements. Applied to the field data, this shows small but important vertical salinity variations in the lake with a salinity maximum at 200 m and a freshening of the surface water with increasing proximity to the shores. The algorithm we adopt to calculate density agrees well with earlier measurements and shows that at 20°C and 1 atm Lake Issyk-Kul water is about 530 g m−3 denser than seawater at the same salinity. The temperature of maximum density at 1 atm is about 0.15°C lower than that for seawater diluted to the same salinity. Despite its small variations, salinity plays an important role, together with temperature changes, in the static stability and in the production of deep-water in this lake. Changes in salinity may have had important consequences on the mixing regime and the fate of inflowing river water over geological time. Uncharged silicic acid is negligible for the stability of the water column except near an ∼15 m thick nepheloid layer observed at the bottom of the deep basin.  相似文献   
994.
995.
The Skidaway River estuary is a tidally-dominated subtropical estuary in the southeastern USA surrounded by extensiveSpartina salt marshes. Weekly smapling at high and low tide began in 1986 for hydrography, nutrients, chlorophylla, particulate matter, and microbial and plankton biomass and composition; hydrographic and nutrient data during 1986–1996 are reported here. Salinity varied inversely with river discharge and exhibited variability at all time scales but with no long-term trend. Water temperature typically ranged over 25°C and was without apparent long-term frend. Seasonal cycles in concentrations of NO3, NH4, PO4, Si(OH)4, and DON were observed, with annual maxima generally occurring in late summer. Superimposed on seasonal cycles, all five nutrients exhibited steady increases in minimum, mean, and maximum concentrations; mean concentrations increased c. 50–150% during the decade. Nutrient concentrations were highly correlated with water temperature over the ten-year period, but weakly related to salinity and discharge. Nutrients were strongly correlated with one another, and the relative ratios among inorganic nutrients showed little long-term trend. Correlations among temperature and nutrient concentrations exhibited considerable inter-annual variability. Major spikes in organic and inorganic nutrient concentrations coincided with significant rainfall events; concentrations increased hyperbolically with rainfall. Although pristine compared to more heavily impacted waterways primarily outside the region, residential development and population density have been increasing rapidly during the past 15–20 years. Land use is apparently altering nutrient loading over the long-term (months-years), and superimposed on this are stochastic meteorological events that accelerate these changes over the short term (days-weeks).  相似文献   
996.
The Irtysh shear zone (ISZ) of Altai region is the lineament structure of the collision-suture type, where granites of Kalba complex and granodiorites of Zmeinogorsk complex are exposed to regional gneiss-formation and stress-metamorphic alterations. This study is based on detailed structural observations at special grounds using optical and electron microscopy, and on the behavior analysis of isotopic systems from altered granitoids.Within the ISZ area we have established the continuous rows of granitoid stress-metamorphism from initial recrystallization of protolite, its cataclasis and mechanical flaring up to complete recrystallization with alteration of mineral composition and formation of the streaky complexes of granite tectonites of blastomylonite and blastocataclasite types. The directed alteration of rocks has several impulse and is expressed by a change in morphology of mineral grains and their relations, magnification of deformation component in the rock structure, and formation of new mineral phases on the basis of initial ones without surface fluidization. At transformation of isotopic systems from granitoid, their feldspars,biotite and hornblende, we can observe “rejuvenation“ of the rock substrate from 270- 290 Ma for Kalba granitoids to 220-235 Ma for their tectonites, and for Rudny Altai granodiorites, their ages changes from 285-317 Ma to 232-257 Ma for their tectonites.  相似文献   
997.
A three-dimensional (3D) density model, approximated by two regional layers—the sedimentary cover and the crystalline crust (offshore, a sea-water layer was added), has been constructed in 1° averaging for the whole European continent. The crustal model is based on simplified velocity model represented by structure maps for main seismic horizons—the “seismic” basement and the Moho boundary. Laterally varying average density is assumed inside the model layers. Residual gravity anomalies, obtained by subtraction of the crustal gravity effect from the observed field, characterize the density heterogeneities in the upper mantle. Mantle anomalies are shown to correlate with the upper mantle velocity inhomogeneities revealed from seismic tomography data and geothermal data. Considering the type of mantle anomaly, specific features of the evolution and type of isostatic compensation, the sedimentary basins in Europe may be related into some groups: deep sedimentary basins located in the East European Platform and its northern and eastern margins (Peri-Caspian, Dnieper–Donets, Barents Sea Basins, Fore–Ural Trough) with no significant mantle anomalies; basins located on the activated thin crust of Variscan Western Europe and Mediterranean area with negative mantle anomalies of −150 to −200×10−5 ms−2 amplitude and the basins associated with suture zones at the western and southern margins of the East European Platform (Polish Trough, South Caspian Basin) characterized by positive mantle anomalies of 50–150×10−5 ms−2 magnitude. An analysis of the main features of the lithosphere structure of the basins in Europe and type of the compensation has been carried out.  相似文献   
998.
The Mascot–Jefferson City (M-JC) Mississippi Valley-type (MVT) deposits are in the Valley and Ridge province of the Appalachian orogen in East Tennessee. They have been a major source of zinc for the USA but their age is uncertain and thus their genesis controversial. About 10 specimens from each of 37 sites have been analysed paleomagnetically using alternating field and thermal step demagnetisation methods and saturation isothermal remanence methods. The sites sample limestones, dolostones, breccia clasts and sphalerite–dolomite MVT mineralisation from mines in the Lower Ordovician Kingsport and Mascot formations of the Knox Group. The characteristic remanent magnetisation (ChRM) is carried by magnetite in the limestones, by both magnetite and pyrrhotite in the dolostones and by pyrrhotite preferentially to magnetite in the mineralisation. Mineralized sites have a more intense ChRM than non-mineralised, indicating that the mineralising and magnetisation event are coeval. Paleomagnetic breccia tests on clasts at the three sites are negative, indicating that their ChRM is post-depositional remagnetisation, and a paleomagnetic fold test is negative, indicating that the ChRM is a remagnetisation, and a post-dates peak Alleghanian deformation. The unit mean ChRM direction for the: (a) limestones gives a paleopole at 129°E, 12°N (dp=18°, dm=26°, N=3), indicating diagenesis formed a secondary chemical remanent magnetisation during the Late Ordovician–Early Silurian; (b) dolomitic limestones and dolostone host rocks gives a paleopole at 125.3°E, 31.9°N (dp=5.3°, dm=9.4°, N=7), recording regional dolomitisation at 334±14 Ma (1σ); and (c) MVT mineralisation gives a paleopole at 128.7°E, 34.0°N (dp=2.4°, dm=4.4°, N=25), showing that it acquired its primary chemical remanence at 316±8 Ma (1σ). The mineralisation is interpreted to have formed from hydrothermal fluid flow, either gravity or tectonically driven, after peak Alleghanian deformation in eastern Tennessee with regional dolomitisation of the host rocks occurring as part of a continuum during the 20 Ma prior to and during peak deformation.  相似文献   
999.
Abstract The initial volcanic phase of Cretaceous island arc strata in central Puerto Rico, at the eastern end of the extinct Greater Antilles Arc, comprises a 6‐km thick pile of lava and volcanic breccia (Río Majada Group). Preserved within the sequence is a conspicuous shift in absolute abundances of the more incompatible elements, including Th, Nb, and the light rare earth elements (LREE: La, Ce, Pr and Nd). The compositional shift is marked by a decrease in La/Sm from averages of 2.11 in the lowest third of the pile (Formation A) to 1.48 at the top (Formation C), and by a distinctive flattening of LREE segments of chondrite‐normalized REE patterns. i87Sr/86Sr and ?Nd average about 0.7035 and 8.2, respectively, in early Formation A basalts. These ranges normally overlap samples from later Formations B and C. Isotope compositions of the latter group are more variable, however, and several samples are considerably more radiogenic than Formation A basalts, such that i87Sr/86Sr averages almost 0.7042 while ?Nd‐values decrease to 7.5 in Formation B and C basalts. Theoretical models of non‐modal melting processes in both amphibole peridotite and spinel lherzolite sources provide insight into the origin of depleted Th, Nb, and LREE abundances in Puerto Rican basalts. Low Nb concentrations less than normal mid‐oceanic ridge basalts in Formation A basalts indicate the wedge was slightly depleted by low‐volume decompression fusion due to induced convection in the back‐arc region prior to entry of the source into the arc melting zone. However, depleted patterns in Formation C basalts cannot be generated by relatively greater degrees of decompression fusion in the back‐arc, because addition of the La‐enriched slab‐derived component to more depleted source material invariably produces elevated rather than decreased La/Sm. Refluxing of Formation A harzburgitic residua is similarly precluded. In contrast, the observed patterns are readily reproduced by multistage melting models involving hybridized sources containing normal Formation A lherzolite source material blended with recycled, unrefluxed harzburgite residua. Successful models require hybrid sources containing large volumes of recycled harzburgite (up to 50%) during generation of Formation C basalts. Slightly elevated radiometric Sr and Nd isotopes in a few flows from Formation C are attributed to partial refluxing of the hybrid sources within the wedge.  相似文献   
1000.
Field observations on ground motions from recent earthquakes imply that current knowledge is limited with regard to relating vertical and horizontal motions at liquefiable sites. This paper describes a study with the purpose of clarifying this emerging issue to some extent. A series of numerical analyses is carried out on a liquefiable soil deposit with a verified, fully coupled, nonlinear procedure. It is shown that the transformation of vertical motions in the deposit differs considerably from the transformation of horizontal motions. Both the amplitude and frequency content of the horizontal motions are strongly dependent on the shaking level or the associated nonlinear soil behavior. The transfer function for vertical motions is however likely to be independent of the intensity of input motions; no reduction in the amplitude occurs even in the case of strong shaking. The results are shown to be in consistence with the laboratory observations on shaking table tests and recent field observations that less nonlinearity exists for vertical motions. It is also shown that the possibility exists for using information on spectral ratios between the horizontal and vertical surface motions to quickly identify in situ soil behavior and liquefaction that are not readily covered by conventional field or laboratory experimentation procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号