首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   14篇
  国内免费   8篇
测绘学   1篇
大气科学   1篇
地球物理   46篇
地质学   40篇
海洋学   12篇
天文学   19篇
综合类   1篇
自然地理   3篇
  2024年   1篇
  2021年   7篇
  2020年   8篇
  2019年   3篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   11篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
  1966年   2篇
  1963年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
31.
On the basis of the model proposed by Matsui and Abe, we will show that two major factors — distance from the Sun and the efficiency of retention of accretional energy — control the early evolution of the terrestrial planets. A diagram of accretional energy versus the optical depth of a proto-atmosphere provides a means to follow the evolutionary track of surface temperature of the terrestrial planets and an explanation for why the third planet in our solar system is an aqua-planet.  相似文献   
32.
Eiichi Tajika  Takafumi Matsui 《Lithos》1993,30(3-4):267-280
The recent theoretical studies on the formation and evolution of the atmosphere and oceans of the Earth are reviewed. Impact degassing during accretion of the Earth would probably generate an impact-induced steam atmosphere on the proto-Earth. At the end of accretion, the steam atmosphere became unstable and condensed to form the proto-ocean with almost the present mass of ocean. The steam atmosphere would have thus evolved to the proto-CO2 atmosphere during the earliest history of the Earth because CO in the proto-atmosphere may be photochemically converted to CO2. However, CO2 in the proto-atmosphere has decreased with time through the global carbon cycle which may have stabilized the terrestrial environment against an increase in the solar luminosity. The continental growth during Hadean and Archean would therefore have a significant influence on the carbon cycle and the surface temperature. It is also suggested that the continental growth is a necessary condition for the terrestrial environment to evolve to the present state. Both the impact degassing and the subsequent continuous degassing are suggested to have played a major role in the formation and evolution of the atmosphere and ocean. In particular, most of N2 may have been produced by the impact degassing during accretion, and the contribution of the subsequent continuous degassing is at most 10% for N2. As a consequence, after the CO2 level decreased to less than 1 bar, the atmosphere may have been at about 1 bar and composed mainly of N2 for most of the subsequent history of the Earth.  相似文献   
33.
胶东烟台磁山花岗岩的形成时代及其成矿意义   总被引:3,自引:0,他引:3  
利用激光探针等离子体质谱测年技术(LA-ICP-MS)对胶东烟台磁山花岗岩的锆石进行了U-Pb年龄测定,8粒锆石的年龄为199~149Ma,可分成3组:192~199Ma(3粒)、178~185Ma(2粒)和149~154Ma(3粒),第3组年龄可能代表岩体的最终侵位时代,表明岩体形成于晚侏罗世,为燕山期花岗岩。另外4粒早元古代的继承锆石年龄为2110~2467Ma,平均年龄为2252±41Ma,反映其源岩有早元古代粉子山群的物质。该岩体的形成年龄为探讨南张家金矿的成因提供了重要依据。  相似文献   
34.
The Ediacaran period was one of the most important times for the evolution of life. However, the scarcity of well-preserved outcrops of Ediacaran rocks still leaves ambiguity in decoding ambient surface environmental changes and biological evolution.The Ediacaran strata in South China are almost continuously exposed, comprise mainly carbonate rocks with subordinate black shales and sandstones, and they contain many fossils, suitable for study of environmental and biological changes in the Ediacaran. We conducted drilling through the Doushantuo Fm at four sites in the Three Gorges area to obtain continuous, fresh samples without surface alteration and oxidation. We analyzed 87Sr/86Sr and 88Sr/86Sr ratios of the fresh carbonate rocks, selected on the basis of microscopic observations and the geochemical signatures of Sr contents, Mn/Sr and Rb/Sr ratios, and δ18O values, with a multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS).The chemostratigraphy of the 87Sr/86Sr ratios of the drilled samples displays a smooth curve and two large positive shifts during Ediacaran time. The combination of the detailed chemostratigraphies of δ13C, δ18O and 87Sr/86Sr values and Mn and Fe contents enables us to decode the surface environmental changes and their causes in the Ediacaran. The first large positive excursion of 87Sr/86Sr occurred together with negative δ13C and positive δ18O excursions. The higher 87Sr/86Sr values indicate an enhancement of continental weathering, whereas the positive δ18O excursion suggests global cooling. Global regression due to global cooling enhanced the oxidative decay of exposed marine organic sediments and continental weathering. Accelerated influx of nutrients promoted primary productivity, resulting in oxidation of dissolved organic carbon (DOC), whereas active sulfate reduction due to a higher sulfate influx from the continents caused remineralization of the large DOC, both of which caused a negative δ13C anomaly. The 580 Ma Gaskiers glaciation accounts for the close correlation among the positive 87Sr/86Sr, negative δ13C and positive δ18O excursions.The second large positive shift of 87Sr/86Sr firstly accompanied a positive δ13C excursion, and continued through the Shuram δ13C negative excursion. The positive correlation of δ13C and 87Sr/86Sr values is consistent with an enhanced continental weathering rate due to continental collisions that built Trans-Gondwana mountain chains, and with a higher primary activity due to the enhancement of continental weathering and consequent higher nutrient contents in seawater. The accompanied increase in Mn and Fe contents implies a gradual decline of the seawater oxygen content due to more active aerobic respiration and oxidation of reductive materials flowing in the oceans. In the Shuram excursion, higher 87Sr/86Sr values and a transition from increase to decrease in Mn and Fe contents were accompanied by the large negative δ13C excursion. The higher 87Sr/86Sr values are the first compelling evidence for enhanced continental weathering, which was responsible for the large δ13C anomaly through the remineralization of the DOC by more active sulfate reduction due to a higher sulfate influx. Higher Mn and Fe contents in the early and middle stages of the excursion suggest a decline in the oxygen content of seawater due to oxidative decay of the DOC, whereas in the late stages the decrease in Mn and Fe contents is consistent with oceanic oxygenation.The emergence of Ediacara biota after the Gaskiers glaciation and the prosperity of the latest Ediacaran is concomitant with the formation of more radiogenic seawater with high 87Sr/86Sr values, suggesting that enhanced continental weathering, and the consequent higher influx of nutrients, played an important role in biological evolution.  相似文献   
35.
U-Pb ages of detrital zircons were newly dated for 4 Archean sandstones from the Pilbara craton in Australia, Wyoming craton in North America, and Kaapvaal craton in Africa. By using the present results with previously published data, we compiled the age spectra of detrital zircons for 2.9, 2.6, 2.3,1.0, and0.6 Ga sandstones and modern river sands in order to document the secular change in age structure of continental crusts through time. The results demonstrated the following episodes in the history of continental crust:(1) low growth rate of the continents due to the short cycle in production/destruction of granitic crust during the Neoarchean to Paleoproterozoic(2.9-23 Ga),(2) net increase in volume of the continents during Paleo-to Mesoproterozoic(2.3-1.0 Ga), and(3) net decrease in volume of the continents during the Neoproterozoic and Phanerozoic(after 1.0 Ga). In the Archean and Paleoproterozoic, the embryonic continents were smaller than the modern continents, probably owing to the relatively rapid production and destruction of continental crust. This is indeed reflected in the heterogeneous crustal age structure of modern continents that usually have relatively small amount of Archean crusts with respect to the post-Archean ones. During the Mesoproterozoic, plural continents amalgamated into larger ones comparable to modern continental blocks in size. Relatively older crusts were preserved in continental interiors, whereas younger crusts were accreted along continental peripheries.In addition to continental arc magmatism, the direct accretion of intra-oceanic island arc around continental peripheries also became important for net continental growth. Since 1.0 Ga, total volume of continents has decreased, and this appears consistent with on-going phenomena along modern active arc-trench system with dominant tectonic erosion and/or arc subduction. Subduction of a huge amount of granitic crusts into the mantle through time is suggested, and this requires re-consideration of the mantle composition and heterogeneity.  相似文献   
36.
A large volume of middle Miocene basaltic rocks is widely distributed across the back-arc region of Northeast Japan, including around the Dewa Mountains. Petrological research has shown that basaltic rocks of the Aosawa Formation around the Dewa Mountains were generated as a result of the opening of the Sea of Japan. To determine the precise ages of the middle Miocene basaltic magmatism, we conducted U–Pb and fission-track (FT) dating of a rhyolite lava that constitutes the uppermost part of the Aosawa Formation. In addition, we estimated the paleostress field of the volcanism using data from a basaltic dike swarm in the same formation. The rhyolite lava yields a U–Pb age of 10.73 ±0.22 Ma (2σ) and a FT age of 10.6 ±1.6 Ma (2σ), and the paleostress analysis suggests a normal-faulting stress regime with a NW–SE-trending σ3-axis, a relatively high stress ratio, and a relatively high magma pressure. Our results show that the late Aosawa magmatism occurred under NW–SE extensional stress and ended at ~ 11 Ma.  相似文献   
37.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   
38.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   
39.
The Archean continental crusts account for ca.20% of the present volume,but the thermal history of the Earths' mantle suggests much more continental crusts were formed in the early Archean.Because the Archean continental crust underwent severe metamorphism,it is important to avoid influence by the later thermal events.We carried out a comprehensive geochronological work of Cathodoluminescence(CL) observation and U-Pb dating of zircons from orthogneisses and supracrustal rocks over the Saglek Block to obtain their protolith ages.The zircons were classified into three domains of core,mantle and rims,and the cores were further classified into three groups of inherited,altered and zoned cores based on the zonation on the CL images.We estimated the protolith ages from Pb-Pb ages of the zoned-cores of zircons with low U contents.We made a detailed sketch of a small outcrop in St.John's Harbour South(SJHS) area,and classified the orthogneisses and mafic enclaves into seven generations based on the geologic occurrence.The first and second generations comprise mafic rocks and lack magmatic zircons.We conducted CL imaging and U-Pb dating of zircons from the third,sixth and seventh generation of the orthogneisses to estimate the protolith ages at 3902 L 25,3892 ± 33 and 3897 ± 33 Ma for each,supporting the presence of the over 3.9 Ca Iqaluk Gneiss.The geological occurrence that the mafic rocks occur as enclaves within the 3.9 Ga Iqaluk Gneiss indicates that they are the oldest supracrustal rocks in the world.Our geochronological and geological studies show the Uivak Gneiss is quite varied in lithology and age from 3.6 to 3.9 Ga,and tentatively classified into six groups based on their ages.The oldest Uivak Gneiss components including the Iqaluk Gneiss are present around the SJHS area,and the orthogneisses become young as it is away.The lines of evidence of overprinting of younger granitoid on older granitoid in small outcrops and geological-map scale as well as presence of inherited zircons even in the oldest suite suggests that crustal reworking played an important role on erasing the ancient crusts.  相似文献   
40.
Supracrustal rocks around the North Pole Dome area, Western Australia, provide valuable information regarding early records of the evolution of crustal processes, surface environments, and biosphere. Owing to the occurrence of the oldest known microfossils, the successions at the North Pole Dome area have attracted interest from many researchers. The Paleoarchean successions (Warrawoona Group) mainly comprise mafic‐ultramafic greenstones with intercalated cherts and felsic lavas. Age constraints on the sediments have been mainly based on zircon U–Pb geochronology. However, many zircon grains have suffered from metamictization and contain anomalously high contents of common Pb, which makes interpretation of the U–Pb data complicated. In order to provide more convincing chronological constraints, an U–Pb Concordia age is widely accepted as the best estimate. Most zircons separated from two adamellites also suffered from severe metamictization. In our analyses, less metamictized domains were selected using a pre‐ablation technique in conjunction with elemental mapping, and then their U–Pb isotopic compositions were determined with a laser ablation inductively coupled plasma mass spectrometry. Most analyzed domains contained certain amounts of common Pb (204Pb/206Pb > 0.000 1), whereas three and five U–Pb data points with less common Pb (204Pb/206Pb < 0.000 1) were obtained. These U–Pb datasets yielded U–Pb Concordia ages of ca 3 445 Ma and 3 454 Ma, respectively. These ages represent the timing of the adamellite intrusion, and constrain the minimum depositional age of the Warrawoona Group. In addition, a single xenocrystic zircon grain showed a 207Pb/206Pb age of ca 3 545 Ma, supporting the idea that the sialic basement of the Pilbara Craton existed prior to 3 500 Ma. The in situ U–Pb zircon dating combined with the pre‐ablation technique has the potentials to identify non‐metamictized parts and to yield precise and accurate geochronological data even from partially metamictized zircons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号