首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   15篇
  国内免费   9篇
测绘学   4篇
大气科学   4篇
地球物理   52篇
地质学   57篇
海洋学   19篇
天文学   43篇
综合类   4篇
自然地理   10篇
  2024年   1篇
  2021年   8篇
  2020年   8篇
  2019年   3篇
  2018年   12篇
  2017年   8篇
  2016年   8篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   3篇
  2011年   12篇
  2010年   5篇
  2009年   11篇
  2008年   13篇
  2007年   6篇
  2006年   12篇
  2005年   8篇
  2004年   9篇
  2003年   3篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1997年   4篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1978年   2篇
排序方式: 共有193条查询结果,搜索用时 125 毫秒
71.
A large volume of middle Miocene basaltic rocks is widely distributed across the back-arc region of Northeast Japan, including around the Dewa Mountains. Petrological research has shown that basaltic rocks of the Aosawa Formation around the Dewa Mountains were generated as a result of the opening of the Sea of Japan. To determine the precise ages of the middle Miocene basaltic magmatism, we conducted U–Pb and fission-track (FT) dating of a rhyolite lava that constitutes the uppermost part of the Aosawa Formation. In addition, we estimated the paleostress field of the volcanism using data from a basaltic dike swarm in the same formation. The rhyolite lava yields a U–Pb age of 10.73 ±0.22 Ma (2σ) and a FT age of 10.6 ±1.6 Ma (2σ), and the paleostress analysis suggests a normal-faulting stress regime with a NW–SE-trending σ3-axis, a relatively high stress ratio, and a relatively high magma pressure. Our results show that the late Aosawa magmatism occurred under NW–SE extensional stress and ended at ~ 11 Ma.  相似文献   
72.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   
73.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   
74.
Linear and nonlinear responses of ten well-type tide gauge stations on the Japan Sea coast of central Japan were estimated by in situ measurements. We poured water into the well or drained water from the well by using a pump to make an artificial water level difference between the outer sea and the well, then measured the recovery of water level in the well. At three tide gauge stations, Awashima, Iwafune, and Himekawa, the sea-level change of the outer sea is transmitted to the tide well instantaneously. However, at seven tide gauge stations, Nezugaseki, Ryotsu, Ogi, Teradomari, Banjin, Kujiranami, and Naoetsu, the sea-level change of the outer sea is not always transmitted to the tide well instantaneously. At these stations, the recorded tsunami waveforms are not assured to follow the actual tsunami waveforms. Tsunami waveforms from the Niigataken Chuetsu-oki Earthquake in 2007 recorded at these stations were corrected by using the measured tide gauge responses. The corrected amplitudes of the first and second waves were larger than the uncorrected ones, and the corrected peaks are a few minutes earlier than the uncorrected ones at Banjin, Kujiranami, and Ogi. At Banjin, the correction was significant; the corrected amplitudes of the first and second upward motion are +103 cm and +114 cm, respectively, while the uncorrected amplitudes were +96 cm and +88 cm. At other tide gauge stations, the differences between the uncorrected and corrected tsunami waveforms were insignificant.  相似文献   
75.
The Archean continental crusts account for ca.20% of the present volume,but the thermal history of the Earths' mantle suggests much more continental crusts were formed in the early Archean.Because the Archean continental crust underwent severe metamorphism,it is important to avoid influence by the later thermal events.We carried out a comprehensive geochronological work of Cathodoluminescence(CL) observation and U-Pb dating of zircons from orthogneisses and supracrustal rocks over the Saglek Block to obtain their protolith ages.The zircons were classified into three domains of core,mantle and rims,and the cores were further classified into three groups of inherited,altered and zoned cores based on the zonation on the CL images.We estimated the protolith ages from Pb-Pb ages of the zoned-cores of zircons with low U contents.We made a detailed sketch of a small outcrop in St.John's Harbour South(SJHS) area,and classified the orthogneisses and mafic enclaves into seven generations based on the geologic occurrence.The first and second generations comprise mafic rocks and lack magmatic zircons.We conducted CL imaging and U-Pb dating of zircons from the third,sixth and seventh generation of the orthogneisses to estimate the protolith ages at 3902 L 25,3892 ± 33 and 3897 ± 33 Ma for each,supporting the presence of the over 3.9 Ca Iqaluk Gneiss.The geological occurrence that the mafic rocks occur as enclaves within the 3.9 Ga Iqaluk Gneiss indicates that they are the oldest supracrustal rocks in the world.Our geochronological and geological studies show the Uivak Gneiss is quite varied in lithology and age from 3.6 to 3.9 Ga,and tentatively classified into six groups based on their ages.The oldest Uivak Gneiss components including the Iqaluk Gneiss are present around the SJHS area,and the orthogneisses become young as it is away.The lines of evidence of overprinting of younger granitoid on older granitoid in small outcrops and geological-map scale as well as presence of inherited zircons even in the oldest suite suggests that crustal reworking played an important role on erasing the ancient crusts.  相似文献   
76.
Phosphorus and metals bound to organic matter were separated from coastal sediments of Harima Sound in Seto Inland Sea, Japan by extraction with NaOH and fractionated by Sephadex G-25 chromatography. Phosphorus and metals were determined in the eluates by a multi-channel, inductively coupled plasma-atomic emission spectrometer. Phosphorus and Cu, Zn, Fe, Mn, Ni, Cr, Co and Ti bound to organic matter with high molecular weights (OMHMW) (MW ? 5000) were found to be present in the sediments, but no Mo or V were found. The technique provides minimum estimates of the amounts of P and metals bound to organic matter. These organic complexes show surface enrichment in a sediment core (0–20 cm) and their contents decrease with depth. Also, the amounts of eighteen elements, namely: P, Fe, Mn, Zn, Cu, Si, Al, Ti, Pb, Co, Ni, Cr, Mo, V, Na, K, Ca and Mg, in H2O, ammonium acetate at pH 7 and 5, hydrogen peroxide, hydroxylamine hydrochloride and hydrogen fluoric acid soluble fractions have been determined with a selective chemical leaching technique for the 210Pb-dated sediment core sample. Considerable amounts of P (6–19%) and Cu (5–21%) were associated with organic matter, in contrast to other metals such as Fe, Mn, Zn, Ni, Cr, Co and Ti which were associated with sulfide and silicate.  相似文献   
77.
After the establishment of the seismic observation network of southern Okinawa in August,1988 by the JMA(Japan Meteorological Agency),many hypocenters of earthquakes have been located.However,due to the small number of observation stations and narrow configuration of the array,the hypocenters lo-cated contain some systematic errors.Numerical experiments on the extent of the errors and the reliabilityof the JMA seismic observation network showed that the obtained hypocenters deeper than 100 km werereliable,but that for the obtained hypocenters shallower than 100 km,only the epicenters were reliable.  相似文献   
78.
Molecular weight and trace metal distributions of fulvic and humic acid fractions of marine sediments from the Seto Inland Sea were investigated by using a gel filtration technique in combination with atomic absorption and emission spectrometries. A binary molecular weight distribution was found both in the fulvic acid fraction and in the humic acid fraction. The fulvic acid fractions with molecular weights of less than 1.5×103 and of 5×103?104 accounted for 38–57 % and 25–41 % of the total fulvic acids, respectively, and the humic acid fractions with molecular weights of 102?104 and of over 2×105 accounted for 58–73 % and 16–27 % of the total humic acids, respectively. The components with molecular weights of over 1.5×103 contained 54 %, on average, of the Fe, Zn and Cu in the fulvic acid fraction, and the components with molecular weights of over 104 contained 58 %, on average, of these metals in the humic acid fraction.  相似文献   
79.
The redox state of the surface environment of the early Earth is still controversial, and a detailed and quantitative estimate is still lacking. We carried out in-situ analyses of major, trace, and rare-earth elements of carbonate minerals in rocks with primary sedimentary structures in shallow and deep sea-deposits, in order to eliminate secondary carbonate and contamination of detrital materials, and to estimate the redox condition of seawater through time. Based on the Ce content and anomalies of the carbonate minerals at given parameters of atmospheric CO2 content (pCO2) and Ca content of seawater, we calculated the oxygen contents of shallow and deep seawater, respectively. The results show that the oxygen content of the deep sea was low and constant until at least 1.9 Ga. The oxygen content of shallow seawater increased after 2.7 Ga, but fluctuated. It became quite high at 2.5 and 2.3 Ga, but eventually increased after the Phanerozoic. In addition, the calculation of a high pCO2 condition shows that seawater was more oxic even in the Archean than at present, suggesting a relatively low pCO2 through geologic time.Our detailed calculations from compositions of carbonate minerals in Three Gorge area, south China show a low oxygen content of seawater after the Snowball Earth until the late Ediacaran, an increase in the late Ediacaran, and a significant decrease around the Precambrian–Cambrian and Nemakit/Daldynian–Tommotian boundaries. These variations were possibly caused by global regression and dissolution of methane hydrates.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号