首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   23篇
  国内免费   7篇
测绘学   3篇
大气科学   17篇
地球物理   127篇
地质学   146篇
海洋学   139篇
天文学   135篇
综合类   9篇
自然地理   43篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   13篇
  2018年   7篇
  2017年   21篇
  2016年   11篇
  2015年   9篇
  2014年   27篇
  2013年   23篇
  2012年   13篇
  2011年   23篇
  2010年   19篇
  2009年   24篇
  2008年   24篇
  2007年   33篇
  2006年   31篇
  2005年   27篇
  2004年   39篇
  2003年   16篇
  2002年   17篇
  2001年   27篇
  2000年   20篇
  1999年   12篇
  1998年   15篇
  1997年   14篇
  1996年   10篇
  1995年   5篇
  1994年   4篇
  1993年   12篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1977年   6篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
排序方式: 共有619条查询结果,搜索用时 203 毫秒
531.
Possible source of the antarctic bottom water in the Prydz Bay Region   总被引:4,自引:0,他引:4  
It has been inferred that the Prydz Bay region is one of the source regions of Antarctic Bottom Water (AABW) based on rather indirect evidence. In order to examine this inference, we investigate the hydrographic condition of the bay based mainly on XCTD data obtained during the Japanese Whale Research Program in the Antarctic (JARPA). The JARPA hydrographic data reveal Circumpolar Deep Water (CDW), which is a salty, warm water mass approaching the shelf break, and capture Modified CDW (MCDW) intruding into the shelf water. AABW production requires mixing of CDW and cold shelf water saltier than 34.6 psu, which is a saltier type of Low Salinity Shelf Water (LSSW). Saltier LSSW is observed near the bottom over the shelf, being mixed with MCDW. We further identify saltier LSSW near the shelf break. This saltier LSSW appears close enough to unmodified CDW to be mixed with it over the continental slope, indicating a possible source of AABW in Prydz Bay.  相似文献   
532.
The influence ofNoctiluca's predation on theAcartia population in Ise Bay was examined by taking samples at 27 stations once a month from May to December, 1974.The copepod eggs were found inNoctiluca mainly in May and June. Considering from various spawning types of copepods, the eggs were presumed to beAcartia, the most numerous species of all copepods in the bay.Noctiluca was dominant plankton in May and June whenAcartia was abundantly distributed.Acartia eggs were found in 33.2–39.3% of individuals ofNoctiluca in May and June.Noctiluca was more frequently observed to contain one egg ofAcartia per individual. It was suggested that 55.0 eggs perAcartia female per day were eaten by theNoctiluca population in May wherease 3.5 eggs in June. It was deduced that 74% of the eggs produced byAcartia was preyed on byNoctiluca (about 5% in June). The predation byNoctiluca as well as that by the sand-eel must influence greatly to the production ofAcartia in the bay.  相似文献   
533.
534.
535.
The variation in cooling processes with depth in a magma body is evaluated quantitatively by analysis of the extent of exsolution coarsening and deuteric coarsening as sub-solidus reactions. This method is applied to evaluation of the Okueyama granitic body of central Kyushu, Japan. Exsolution coarsening has produced microperthite textures in this body, while deuteric coarsening has resulted in patchperthite, myrmekite, and reaction rims, respectively. Through measurement of six textural parameters, including the width and spacing of lamellae and the thickness of myrmekite and reaction rims, the extent of these sub-solidus reactions is shown to increase systematically with depth in the granite body, indicating that the Okueyama cooled gradually from the roof. The hornblende–plagioclase and ternary feldspar thermometers indicate temperature a range of 710 to 620 °C for volume diffusion associated with exsolution coarsening, while deuteric coarsening is found to have occurred at temperatures below 500 °C on the basis of the ternary feldspar thermometer. The cooling period corresponding to exsolution coarsening is estimated using a one-dimensional heat transfer model, yielding periods of 820 y at the roof and 1390–1890 y at the base of the exposure (1000 m below the roof) depending on total depth of the original magma body.  相似文献   
536.
The staggered grid finite-difference method is a powerful tool in seismology and is commonly used to study earthquake source dynamics. In the staggered grid finite-difference method stress and particle velocity components are calculated at different grid points, and a faulting problem is a mixed boundary problem, therefore different implementations of fault boundary conditions have been proposed. Viriuex and Madariaga (1982) chose the shear stress grid as the fault surface, however, this method has several problems: (1) Fault slip leakage outside the fault, and (2) the stress bump beyond the crack tip caused by S waves is not well resolved. Madariaga et al. (1998) solved the latter problem via thick fault implementation, but the former problem remains and causes a new issue; displacement discontinuity across the slip is not well modeled because of the artificial thickness of the fault. In the present study we improve the implementation of the fault boundary conditions in the staggered grid finite-difference method by using a fictitious surface to satisfy the fault boundary conditions. In our implementation, velocity (or displacement) grids are set on the fault plane, stress grids are shifted half grid spacing from the fault and stress on the fictitious surface in the rupture zone is given such that the interpolated stress on the fault is equal to the frictional stress. Within the area which does not rupture, stress on the fictitious surface is given a condition of no discontinuity of the velocity (or displacement). Fault normal displacement (or velocity) is given such that the normal stress on the fault is continuous across the fault. Artificial viscous damping is introduced on the fault to avoid vibration caused by onset of the slip. Our implementation has five advantages over previous versions: (1) No leakage of the slip prior to rupture and (2) a zero thickness fault, (3) stress on the fault is reliably calculated, (4) our implementation is suitable for the study of fault constitutive laws, as slip is defined as the difference between displacement on the plane of z = + 0 and that of z = − 0, and (5) cessation of slip is achieved correctly.  相似文献   
537.
Abstract Temporal–spatial variations in Late Cenozoic volcanic activity in the Chugoku area, southwest Japan, have been examined based on 108 newly obtained K–Ar ages. Lava samples were collected from eight Quaternary volcanic provinces (Daisen, Hiruzen, Yokota, Daikonjima, Sambe, Ooe–Takayama, Abu and Oki) and a Tertiary volcanic cluster (Kibi Province) to cover almost all geological units in the province. Including published age data, a total of 442 Cenozoic radiometric ages are now available. Across‐arc volcanic activity in an area approximately 500 km long and 150 km wide can be examined over 26 million years. The period corresponds to syn‐ and post‐back‐arc basin opening stages of the island arc. Volcanic activity began in the central part of the rear‐arc ca 26 Ma. This was followed by arc‐wide expansion at 20 Ma by eruption at two rear‐arc centers located at the eastern and western ends. Expansion to the fore‐arc occurred between 20 and 12 Ma. This Tertiary volcanic arc was maintained until 4 Ma with predominant alkali basalt centers. The foremost‐arc zone activity ceased at 4 Ma, followed by quiescence over the whole arc between 4 and 3 Ma. Volcanic activity resumed at 3 Ma, covering the entire rear‐arc area, and continued until the present to form a Quaternary volcanic arc. Adakitic dacite first occurred at 1.7 Ma in the middle of the arc, and spread out in the center part of the Quaternary volcanic arc. Alkali basalt activities ceased in the area where adakite volcanism occurred. Fore‐arc expansion of the volcanic arc could be related to the upwelling and expansion of the asthenosphere, which caused opening of the Japan Sea. Narrowing of the volcanic zone could have been caused by progressive Philippine Sea Plate subduction. Deeper penetration could have caused melting of the slab and resulted in adakites. Volcanic history in the Late Cenozoic was probably controlled by the history of evolution of the upper mantle structure, coinciding with back‐arc basin opening and subsequent reinitiation of subduction.  相似文献   
538.
This study aimed to identify displacement properties of landslide masses at the initiation of failure and factors that affect the landslides activities in areas where quick clay is found. We set up a research site in a quick clay deposit area in Norway and monitored the displacements of landslide masses and meteorological and hydrological factors for a long period of time using an automatic monitoring system. The system collected data for two landslides that occurred at the site from the start of their movement until their ultimate collapse.

The two landslides that were monitored showed definite secondary and tertiary creep stages before they collapsed. One of the landslides moved from the secondary stage to the tertiary creep stage when another landslide occurred nearby. The tertiary stage of this landslide showed reconstruction of short primary, secondary, and tertiary creep stages. These phenomena suggested that (1) the stress at the end of the landslide mass was released during the nearby landslide, and (2) a new stress distribution was formed in the landslide mass. The critical strain differed for 14 times between the two landslide masses we monitored. The difference was likely attributable to the difference in the contents of quick clay, which shows small critical stress against slope failure, as well as topological factors.

Our analyses of the effects of hydrological and meteorological factors on landslides showed that the precipitation of 3 and 10 days before six slope failures as the final stages of the landslides that had occurred in the research area was no different from the mean precipitation of periods that showed no slope failure, suggesting that precipitation had no direct effects on the collapse of the landslide masses. On the other hand, the traveling velocities of the landslide masses during the secondary creep stage, which was prior to their collapse, were affected by the water content of the soil and precipitation (and the amount of snowmelt water), but was little correlated with the pore-water pressure of the quick clay layer. We also found that the presence of snow cover scarcely affected landslide movements.  相似文献   

539.
Abstract: Interstitial water expelled from gas hydrate-bearing and -free sediments in the Nankai Trough are analyzed in terms of Cl-, SO42-, δ18O and δD. The baselines for the Cl- concentration and δ18O value are close to seawater values (530 mM and 0%), indicating that the interstitial water is of seawater origin. The δD values decrease with depth, implying isotopic exchange of hydrogen between upwelling biogenic methane depleted in D and interstitial water. The Cl- concentrations in gas hydrate-bearing sediments are anomalously low, while the δ18O and δD values are both high, suggesting that the water forming these gas hydrates was poor in Cl- and enriched in 18O and D during gas hydrate formation. Calculation of the gas hydrate saturations using Cl "and δ18O anomalies gives results of up to 80 % in sand, and shows that the δ18O baseline is not consistent with the Cl" baseline. The δ18O baseline increases by +1% in gas hydrate-free clay and silt. This is considered to be caused by clustering of water molecules after gas hydrate dissociation in response to the upward migration of the base of gas hydrate stability, as indicated by the presence of a double bottom-simulating reflector at this site. The water clusters enriched in 18O are responsible for the increase in the δ18O baseline with normal Cl". The abrupt shallowing of the base of gas hydrate stability may induce the dissociation of gas hydrates and the accumulation of gases in the new stability zone, representing a geological process that increases gas hydrate saturation.  相似文献   
540.
Abstract. The Nankai Trough parallels the Japanese Island, where extensive BSRs have been interpreted from seismic reflection records. High resolution seismic surveys and drilling site-survey wells conducted by the MTI in 1997, 2001 and 2002 have revealed subsurface gas hydrate at a depth of about 290 mbsf (1235 mbsl) in the easternmost part of Nankai Trough. The MITI Nankai Trough wells were drilled in late 1999 and early 2000 to provide physical evidence for the existence of gas hydrate. During field operations, continuous LWD and wire-line well log data were obtained and numerous gas hydrate-bearing cores were recovered. Subsequence sedimentologic and geochemical analyses performed on the cores revealed important geologic controls on the formation and preservation of natural gas hydrate. This knowledge is crucial to predicting the location of other hydrate deposits and their eventual energy resource. Pore-space gas hydrates reside in sandy sediments from 205 to 268 mbsf mostly filling intergranular porosity. Pore waters chloride anomalies, core temperature depression and core observations on visible gas hydrates confirm the presence of pore-space hydrates within moderate to thick sand layers. Gas hydrate-bearing sandy strata typically were 10 cm to a meter thick. Gas hydrate saturations are typically between 60 and 90 % throughout most of the hydrate-dominant sand layers, which are estimated by well log analyses as well as pore water chloride anomalies.
It is necessary for evaluating subfurface fluid dlow behavious to know both porosity and permeability of gas hydrate-bearing sand to evaluate subsurface fluid flow behaviors. Sediment porosities and pore-size distributions were obtained by mercury porosimetry, which indicate that porosities of gas hydrate-bearing sandy strata are approximately 40 %. According to grain size distribution curves, gas hydrate is dominant in fine- to very fine-grained sandy strata.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号