首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   456篇
  免费   14篇
  国内免费   7篇
测绘学   5篇
大气科学   26篇
地球物理   125篇
地质学   140篇
海洋学   95篇
天文学   44篇
综合类   3篇
自然地理   39篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   13篇
  2016年   13篇
  2015年   9篇
  2014年   29篇
  2013年   16篇
  2012年   16篇
  2011年   13篇
  2010年   24篇
  2009年   24篇
  2008年   30篇
  2007年   19篇
  2006年   22篇
  2005年   25篇
  2004年   17篇
  2003年   20篇
  2002年   18篇
  2001年   20篇
  2000年   10篇
  1999年   9篇
  1998年   9篇
  1997年   4篇
  1996年   11篇
  1995年   4篇
  1993年   9篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   7篇
  1983年   2篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1963年   2篇
  1956年   2篇
  1951年   1篇
  1950年   2篇
排序方式: 共有477条查询结果,搜索用时 15 毫秒
31.
The varved sediment of Lake Suigetsu (central Japan) provides a valuable opportunity to obtain high‐resolution, multi‐proxy palaeoenvironmental data across the last glacial/interglacial cycle. In order to maximize the potential of this archive, a well‐constrained chronology is required. This paper outlines the multiple geochronological techniques being applied – namely varve counting, radiocarbon dating, tephrochronology (including argon–argon dating) and optically stimulated luminescence (OSL) – and the approaches by which these techniques are being integrated to form a single, coherent, robust chronology. Importantly, we also describe here the linkage of the floating Lake Suigetsu (SG06) varve chronology and the absolute (IntCal09 tree‐ring) time scale, as derived using radiocarbon data from the uppermost (non‐varved) portion of the core. This tie‐point, defined as a distinct (flood) marker horizon in SG06 (event layer B‐07–08 at 1397.4 cm composite depth), is thus derived to be 11 255 to 11 222 IntCal09 cal. years BP (68.2% probability range).  相似文献   
32.
A model of the drainage flow in a valley under calm conditions has been developed on the basis of the conservation laws of mass, momentum, and heat. The inflow of mass and heat from side-slopes is incorporated, and the momentum and sensible heat exchanges between valley drainage flow and valley floor are parameterized.The characteristic velocity of valley drainage flow is expressed in terms of the following parameters: three potential temperature differences representing the temperature field in the valey; topographic parameters of the valley; mean bulk coefficients representing the aerodynamic conditions of the valley floor; and the stability of the ambient atmosphere. The characteristic thickness includes additional parameters of side-slope flow.That the model satisfactorily predicts the characteristic thickness and velocity is shown from comparison with observations from valleys several hundred meters to a few hundred kilometers long.  相似文献   
33.
Abstract Fossil worm tubes were collected from the Hayama Group, Miura Peninsula, Japan, together with abundant fossils of Calyptogena-Acharax clams. The fossil worm tubes were well preserved and coated with milky white amorphous silica. Most of the tubes were 1-3 mm in diameter, and up to 10 cm in length. Worm tubes were found in siltstone and limestone, and formed network-like assemblages. Elemental mapping on the tube cross-sections revealed the localization of sulfur, zinc and iron at the worm tubes, which suggests that sulfur-related metabolism and deposition occurred in association with the worm tubes. High resolution analysis revealed the localization of zinc-sulfur (sphalerite, ZnS) on the tubes, while iron-sulfur (pyrite, FeS2) was localized at the center of the tubes. The spatially separate sphaleritization and pyritization imply that epiphytic and endosymbiotic microorganisms perform different sulfur metabolisms, such as sulfate-reduction and sulfide-oxidation.  相似文献   
34.
Over 500 oriented samples of felsic rocks of Cretaceous to Middle Miocene age were collected along the Go¯River in the central part of Southwest Japan, in an attempt to detect the process of tectonic rotation of Southwest Japan from the paleomagnetic view point. Thermal demagnetization was successful in isolating characteristic directions from the remanent magnetization of samples. Reliability of the paleomagnetic direction is ascertained through the agreement of directions from different kinds of rocks as well as the presence of both normal and reversed polarities. The paleomagnetic results establish that Southwest Japan began to rotate clockwise through58 ± 14° later than 28 Ma and ceased its motion by about 12 Ma. Southwest Japan has undergone no detectable north-south translation since 28 Ma. These results imply that southwest Japan was rotated about the pivot around 34°N, 129°E between 28 Ma and 12 Ma in association with the opening of the Japan Sea.  相似文献   
35.
—?In Almería city large earthquakes occurred and many buildings were completely destroyed in these historical earthquakes. The actual population of Almería city is about 200,000 people. This population is rapidly increasing and new urbanizing areas are growing to the eastern part of the city where they are located in softer soil conditions. Consequently, the evaluation of surface soil conditions is very important from a standpoint of earthquake disaster mitigation. We have obtained a landform classification map developed by analysing aerial photos, large-scale topographic maps and 80 borehole data. Eleven unit areas, which have different soil conditions, were inferred from this research. Also, S-wave velocity prospecting tests were carried out at several sites within the city. The shear-velocity values of the ground vary from 1689?m/s in hard rock to 298?m/s in soft soil. These results are useful for understanding the uppermost soil characteristics and are used for soil classification. Finally, short-period microtremor observations were densely carried out in the research area and NAKAMURA's method (1989) was applied for determining predominant periods. Microtremors were observed at about 173 sites with mainly 400?m interval in rock sites and 200?m interval in relatively soft soil sites. From the result of these microtremor measurements, the predominant period determined at rock site, in the western part of the city and historic area, is very short, about 0.1?s, and very stable. However at soft soil sites, in the center of the city, near Zapillo Beach and in the newly developed urban area, the predominant period is about 1.0?s and even larger in concordance with the geological conditions. Finally, at medium soil sites, in the eastern part of the city, the predominant period is about 0.4?s and it appears very stable in the whole region. The difference of predominant periods between hard rock and soft soil sites is very clear and it has been observed that the distribution of predominant periods depends heavily on the surface soil conditions.  相似文献   
36.
To understand the oxidation state and process of oxidation of lava domes, we carried out magnetic petrological analyses of lava samples obtained from domes and block-and-ash-flow deposits associated with the 1991–1995 eruption of Unzen volcano, Japan. As a result, we recognize three different types of magnetic petrology, each related to deuteric high-temperature oxidation during initial cooling. Type A oxides are characterized by homogenous titanomagnetite and titanohematite, indicating a low oxidation state and high titanomagnetite concentrations. Type B oxides are weakly exsolved and contain titanohematite laths and rutile lenses, indicating a higher oxidation state. Type C oxides, which represent the highest oxidation state, are completely exsolved and composed of Ti-poor titanomagnetite, titanohematite, rutile, and pseudobrookite, indicating high hematite concentrations. Some grains in Types A and B show indications of reduction, which was related to interaction with volcanic gases subsequent to high-temperature oxidation. In terms of geological occurrence, the oxidation processes probably differed for endogenous and exogenous domes. Endogenous dome lavas are oxidized concentrically and are classified into the three types according to their location within the dome: samples from the surface are strongly oxidized and classified as Type C, while the inner part is unoxidized and classified as Type A. Exogenous dome lavas are unoxidized and assigned to Type A. Some samples show signs of reduction, which may have occurred around fumaroles. We propose that location within the dome and the process of dome growth are the factors that control oxidation.  相似文献   
37.
Abstract The 1995 Kobe (Hyogo-ken Nanbu) earthquake (MJMA 7.2, Mw 6.9) occurred on Jan. 17, 1995, at a depth of 17 km, beneath the areas of southern part of Hyogo prefecture and Awaji Island. To investigate P-wave velocity distribution and seismological characteristics in the aftershock area of this great earthquake, a wide-angle and refraction seismic exploration was carried out by the Research Group for Explosion Seismology (RGES) . The profile including 6 shot points and 205 observations was 135 km in length, extending from Keihoku, Northern Kyoto prefecture, through Kobe, to Seidan on Awaji Island. The charge of each shot was 350–700 kg. The P-wave velocity structure model showed a complicated sedimentary layer which is shallower than 2.5 km, a 2.5 km-thick basement layer whose velocity is 5.5 km/s, overlying the crystalline upper crust, and the boundary between the upper and lower crust.
Almost all aftershock hypocenters were located in the upper crust. However, the structure model suggests that the hypocenters of the main shock and some aftershock clusters were situated deeper than the boundary between the upper and lower crust. We found that the P-velocity in the upper crust beneath the northern part of Awaji Island is 5.64 km/s which is 3% lower than that of the surrounding area. The low-velocity zone coincides with the region where the high stress moment release was observed.  相似文献   
38.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   
39.
The late Cenozoic orogeny in Japan is briefly reviewed. Amounts of volcanic materials in the three periods of the orogeny are estimated at: early Neogene 150 × 103 km3 (mafic 40 %, salic 60 %), middle and late Neogene 20 × 103 km3 (mafic 70 %, salic 30 %), Quaternary 5 × 103 km3 (mafic 80 %, salic 20 %). The largest volume per unit time is in the early Neogene, and the smallest in the middle and late Neogene. Volume per unit area becomes larger towards the southeastern margin or «front» of the volcanic belt. Thermal energy transported by volcanic materials is compared with the terrestrial heat flow in the belt.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号