首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   5篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   20篇
地质学   26篇
海洋学   16篇
天文学   17篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   7篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1992年   1篇
  1985年   2篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
51.
A simple calculation procedure for estimating absolute maximum slip displacement of a freestanding rigid body placed on the ground or floor of linear/nonlinear multi‐storey building during an earthquake is developed. The proposed procedure uses the displacement induced by the horizontal sinusoidal acceleration to approximate the absolute maximum slip displacement, i.e. the basic slip displacement. The amplitude of this horizontal sinusoidal acceleration is identical to either the peak horizontal ground acceleration or peak horizontal floor response acceleration. Its period meets the predominant period of the horizontal acceleration employed. The effects of vertical acceleration are considered to reduce the friction force monotonously. The root mean square value of the vertical acceleration at the peak horizontal acceleration is used. A mathematical solution of the basic slip displacement is presented. Employing over one hundred accelerograms, the absolute maximum slip displacements are computed and compared with the corresponding basic slip displacements. Their discrepancies are modelled by the logarithmic normal distribution regardless of the analytical conditions. The modification factor to the basic slip displacement is quantified based on the probability of the non‐exceedence of a certain threshold. Therefore, the product of the modification factor and the basic slip displacement gives the design slip displacement of the body as the maximum expected value. Since the place of the body and linear/nonlinear state of building make the modification factor slightly vary, ensuring it to suit the problem is essential to secure prediction accuracy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
52.
本文报道了南岭地区两个花岗岩(大东山和千里山)的全岩以及主要造岩矿物(黑云母、斜长石和石英)的硼含量和硼同位素组成。结果显示,黑云母含有最高的硼含量,斜长石次之,石英中的硼含量则非常低。花岗岩中的硼可能主要以晶格替换方式赋存在黑云母和斜长石中,而石英中的微量硼则来自其包裹的流体包裹体。同时,黑云母具有最低的硼同位素组成,斜长石次之,而石英则具有最高的硼同位素组成。本次研究首次发现花岗岩中的主要造岩矿物间存在着较大的硼同位素分馏:大东山花岗岩中黑云母与斜长石之间存在着-9.3‰的分馏,黑云母与石英之间存在-9.9‰的分馏;千里山花岗岩中黑云母与斜长石之间存在着-6.6‰的分馏,黑云母与石英之间存在着-10.2‰的硼同位素分馏。结合镜下观察和氧同位素研究发现,造成不同矿物间这一大的硼同位素分馏的原因很可能是岩浆后期的热液蚀变作用。综合以往所发表的研究数据,得到含四次配位硼为主的硅酸盐矿物与中酸性热液流体之间的硼同位素分馏方程:1000lnα硅酸盐-流体=-11.19×(103/T[K])+5.09,该分馏是由于硼的四次配位和三次配位之间的转换引起的。  相似文献   
53.
When subjected to long‐period ground motions, high‐rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full‐scale substructure shaking table test to reproduce large floor responses of high‐rise buildings. The response at the top floor of a virtual 30‐story building model subjected to a synthesized long‐period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber‐and‐mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open‐loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H method are adopted to construct the controller. A numerical example is presented to illustrate the open‐loop IDCS algorithm and compare the performance of different methods of controller design. A series of full‐scale substructure shaking table tests are conducted in E‐Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber‐and‐mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
54.
Results from computational morphodynamics modeling of coupled flow–bed–sediment systems are described for 10 applications as a review of recent advances in the field. Each of these applications is drawn from solvers included in the public-domain International River Interface Cooperative (iRIC) software package. For mesoscale river features such as bars, predictions of alternate and higher mode river bars are shown for flows with equilibrium sediment supply and for a single case of oversupplied sediment. For microscale bed features such as bedforms, computational results are shown for the development and evolution of two-dimensional bedforms using a simple closure-based two-dimensional model, for two- and three-dimensional ripples and dunes using a three-dimensional large-eddy simulation flow model coupled to a physics-based particle transport model, and for the development of bed streaks using a three-dimensional unsteady Reynolds-averaged Navier–Stokes solver with a simple sediment-transport treatment. Finally, macroscale or channel evolution treatments are used to examine the temporal development of meandering channels, a failure model for cantilevered banks, the effect of bank vegetation on channel width, the development of channel networks in tidal systems, and the evolution of bedrock channels. In all examples, computational morphodynamics results from iRIC solvers compare well to observations of natural bed morphology. For each of the three scales investigated here, brief suggestions for future work and potential research directions are offered. © 2019 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd  相似文献   
55.
Ocean Dynamics - We demonstrate that assimilation of water temperature measurements by sea turtles into an operational ocean nowcast/forecast system improves representation of mesoscale eddies and...  相似文献   
56.
57.
Continuing a work initiated in an earlier publication (Yamada et al. in Phys Rev D 91:124016, 2015), we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein–Infeld–Hoffmann form of equations of motion for N-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e., we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these do not grow with time, but always precess with two frequency modes, namely, the same with the orbital frequency and the slightly different one due to the 1PN effect. The condition of stability, which is identical to that obtained by the previous work (Yamada et al. 2015) and is valid for the general perturbations, is obtained from the lying perturbations.  相似文献   
58.
We have investigated interannual-scale variations of oceanic and atmospheric anomaly fields, such as upper ocean heat content (OHC), sea surface temperature (SST), latent heat flux (LHF) through the sea surface, sea level pressure (SLP) and wind stress curl (WSC) in the tropical Pacific and their relationships to El Niño/Southern Oscillation (ENSO) events. The results reported here show that the OHC and SST anomalies are almost in phase and lead LHF anomalies in the western tropical Pacific (WTP) region, which are preferable to the generation of subsequent atmospheric anomalies in the WTP. We also describe linear relationships between the amplitudes of these variables in the WTP. In addition, the results show that the both WSC and LHF anomalies are in phase with the temporal trend of OHC anomalies in the WTP, and suggest a combined effect of the local WSC and LHF anomaly in the WTP and ENSO-related, off-equatorial, westward propagating OHC anomaly to generate a large OHC anomaly in the WTP. In contrast to the WTP, OHC and SST anomalies are not in phase to the east of the WTP. The results also indicate that OHC anomalies in the WTP have a potential effect on the generation of an equatorial OHC anomaly via both a reflection of waves at the western boundary and atmospheric variations, which force the enhancement of western equatorial OHC anomaly. Therefore, the WTP is a key region where ENSO events are significantly modulated, and OHC anomalies in the WTP play an important role in the subsequent ENSO event.  相似文献   
59.
The contribution of subducted carbonate sediments to the genesis of the Southwestern Colombian arc magmas was investigated using a comprehensive petrography and geochemical analysis, including determination of major and trace element contents and Sr, Nd, Hf and Pb isotope compositions. These data have been used to constrain the depth of decarbonation in the subducted slab, indicating that the decarbonation process continues into the sub-arc region, and ultimately becomes negligible in the rear arc. We propose on the basis of multi-isotope approach and mass balance calculations, that the most important mechanism to induce the slab decarbonation is the infiltration of chemically reactive aqueous fluids from the altered oceanic crust, which decreasingly metasomatize the mantle wedge, triggering the formation of isotopically different primary magmas from the volcanic front (VF) with relatively high 176Hf/177Hf, high 87Sr/86Sr, negative values of εNd and lower Pb isotopes compared to the rear arc (RA).The presence of more aqueous fluids at the volcanic front may increase the degree of decarbonation into carbonate-bearing lithologies. Moreover, with increasing pressure and temperature in the subduction system, the decrease in dehydration of the slab, leads to cessation of fluid-induced decarbonation reactions at the rear arc. This development allows the remaining carbonate materials to be recycled into the deep mantle.  相似文献   
60.
The X-ray CT based numerical analysis of fracture flow for core samples, recently developed by the authors, was applied to two granite core samples having either a mated artificial or a mated natural fracture at confining pressures of 5 to 50 MPa. A third-generation medical X-ray CT scanner was used to image the samples within a core holder consisting of an aluminum liner and a carbon fiber overwrap. Fracture models (i.e., aperture distributions) were obtained by the CT images, the resolution of which was coarser than the apertures, and a single-phase flow simulation was performed using a local cubic law-based fracture flow model. Numerical results were evaluated by a fracture porosity measurement and a solution displacement experiment using NaCl and NaI aqueous solutions. These numerical results coincided only qualitatively with the experimental results, primarily due to image noise from the aluminum liner of the core holder. Nevertheless, the numerical results revealed flow paths within the fractures and their changes with confining pressure, whereas the experimental results did not provide such results. Different stress-dependencies in the flow paths were observed between the two samples despite the similar stress-dependency in fracture porosity and permeability. The changes in total area of the flow paths with confining pressure coincided qualitatively with changes in breakthrough points in the solution displacement experiment. Although the data is limited, the results of the present study suggest the importance of analyzing fluid flows within naturally fractured core samples under in situ conditions in order to better understand the fracture flow characteristics in a specific field. As demonstrated herein, X-ray CT-based numerical analysis is effective for addressing this concern. Using a multi-phase flow model, as well as a core holder constructed of an engineered plastic, should provide a useful, non-destructive, and non-contaminative X-ray CT-based fracture flow analysis for core samples under in situ conditions in future studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号