首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
测绘学   2篇
大气科学   3篇
地球物理   27篇
地质学   25篇
海洋学   14篇
天文学   15篇
综合类   3篇
自然地理   7篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   8篇
  2010年   4篇
  2009年   8篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
61.
Lattice preferred orientations (LPO) developed in perovskite and post-perovskite structured CaIrO3 were studied using the radial X-ray diffraction technique combined with a diamond anvil cell. Starting materials of each phase were deformed from 0.1 MPa to 6 GPa at room temperature. Only weak LPO was formed in the perovskite phase, whereas strong LPO was formed in the post-perovskite phase with an alignment of the (010) plane perpendicular to the compression axis. The present result suggests that the (010) is a dominant slip plane in the post-perovskite phase and it is in good agreement with the crystallographic prediction, dislocation observations via transmission electron microscopy, and a recent result of simple shear deformation experiment at 1 GPa–1,173 K. However, the present result contrasts markedly from the results on MgGeO3 and (Mg,Fe)SiO3, which suggested that the (100) or (110) is a dominant slip plane with respect to the post-perovskite structure. Therefore it is difficult to discuss the behavior of the post-perovskite phase in the Earth’s deep interior based on existing data of MgGeO3, (Mg,Fe)SiO3 and CaIrO3. The possible sources of the differences between MgGeO3, (Mg,Fe)SiO3 and CaIrO3 are discussed.  相似文献   
62.
63.
 In order to clarify Al2O3 content and phase stability of aluminous CaSiO3-perovskite, high-pressure and high-temperature transformations of Ca3Al2Si3O12 garnet (grossular) were studied using a MA8-type high-pressure apparatus combined with synchrotron radiation. Recovered samples were examined by analytical transmission electron microscopy. At pressures of 23–25 GPa and temperatures of 1000–1600 K, grossular garnet decomposed into a mixture of aluminum-bearing Ca-perovskite and corundum, although a metastable perovskite with grossular composition was formed when the heating duration was not long enough at 1000 K. On release of pressure, this aluminum-bearing CaSiO3-perovskite transformed to the “LiNbO3-type phase” and/or amorphous phase depending on its Al2O3 content. The structure of this LiNbO3-type phase is very similar to that of LiNbO3 but is not identical. CaSiO3-perovskite with 8 to 25 mol% Al2O3 was quenched to alternating lamellae of amorphous layer and LiNbO3-type phase. On the other hand, a quenched product from CaSiO3-perovskite with less than 6 mol% consisted only of amorphous phase. Most of the inconsistencies amongst previous studies could be explained by the formation of perovskite with grossular composition, amorphous phase, and the LiNbO3-type phase. Received: 11 April 2001 / Accepted: 5 July 2002  相似文献   
64.
Phase relations in the system KAlSi3O8-NaAlSi 3O8 have been examined at pressures of 5–23 GPa and temperatures of 700–1200° C. KAlSi3O8 sanidine first dissociates into a mixture of wadeite-type K2Si4O9, kyanite and coesite at 6–7 GPa, which further recombines into KAlSi3O8 hollandite at 9–10 GPa. In contrast, NaAlSi3O8 hollandite is not stable at 800–1200° C near 23 GPa, where the mixture of jadeite plus stishovite directly changes into the assemblage of calcium ferrite-type NaAlSiO4 plus stishovite. Phase relations in the system KAlSi3O8-NaAlSi3O8 at 1000° C show that NaAlSi3O8 component gradually dissolves into hollandite with increasing pressure. The maximum solubility of NaAlSi3O8 in hollandite at 1000° C was about 40 mol% at 22.5 GPa, above which it decreases with pressure. Unit cell volume of the hollandite solid solution decreases with increasing NaAlSi3O8 component. The hollandite solid solution in this system may be an important candidate as a host mineral of K and Na in the uppermost lower mantle  相似文献   
65.
High resolution strip maps of CS (J=1–0) and H51 line emission across the Orion bright bar are presented. They reveal the existence of a high density molecular layer (molecular sheet) plane parallel to the ionization front. This molecular sheet is redshifted relative to the ambient molecular cloud by about 2 km s–1. The rapid decrease of the CS emission at about 50 arc sec from the bar suggests that a shock front exists here and the sheet is a post shock layer.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.This work was carried out under the common use observation program at the Nobeyama Radio Observatory (NRO). NRO, a branch of the Tokyo Astronomical Observatory, University of Tokyo, Japan, is a cosmic radio observing facility open to outside users.  相似文献   
66.
Organic carbon (C) and total nitrogen (N) contents and corresponding isotope ratios were determined in surficial sediment (0–3 cm) at 94 stations ranging from 21 to 1995 m water depth off Tokachi, Hokkaido, Japan, to elucidate the distribution and source of sedimentary organic matter. Suspended particulate organic matter (POM) in the seawater and suspended POM and sediment in the Tokachi River were also examined. δ13C, δ15N and C / N ratios of the samples in the Tokachi River suggest that the spring snowmelt is an important process for the transport of terrestrial organic matter to the coastal waters. δ13C values of suspended POM in the surface seawater were higher in May and November than in August, while δ15N values of the POM were higher in May and August than in November. These changes are attributed to seasonal changes in phytoplankton growth rate and nitrate availability. δ13C and δ15N values in the sediments off Tokachi were lowest near the Tokachi River mouth, and increased offshore to constant values that persisted from 134 to 1995 m water depth. The spatial variation in C / N ratios in the sediment mirrored those of δ13C and δ15N. Comparison of δ13C, δ15N and C / N ratios in the sediments off Tokachi with those in the Tokachi River and seawater indicates that about half of the organic matter in the sediment was of terrestrial origin near the Tokachi River mouth, and the sedimentary organic matter from 134 to 1995 m water depth was of marine origin. The organic C content in the sediment was high near the Tokachi River mouth, and also around 1000 m water depth. The C content was significantly correlated with silt plus clay content, with different regression lines for those stations shallower and deeper than 134 m, owing to several stations of higher C content with the elevated C / N ratio on the inner shelf. These results suggest that transport and deposition of organic-rich fine sediment particles by hydrodynamic processes were major factors controlling C content off Tokachi. In addition, the supply of a fraction of terrestrial organic matter with high C / N probably also affected C content on the inner shelf.  相似文献   
67.
Interferometer observation of a behind-the-limb flare on 7 September, 1977, at 35 GHz ( = 8.6 mm) shows that the microwave non-thermal radio source of the burst is located in the coronal region at the height higher than 7000 km above the photosphere and rises gradually with the velocity of about 30 km s-1.  相似文献   
68.
Uncertainty for elemental and isotopic measurements in calcite by LA‐ICP‐MS is largely controlled by the homogeneity of the reference materials (RMs) used for calibration and validation. In order to produce calcite RMs with homogeneous elemental and isotopic compositions, we incorporated elements including U, Pb and rare earth elements into calcite through heat‐ and pressure‐induced crystallisation from amorphous calcium carbonate that was precipitated from element‐doped reagent solution. X‐ray absorption spectra showed that U was present as U(VI) in the synthesised calcite, probably with a different local structure from that of aqueous uranyl ions. The uptake rate of U by our calcite was higher in comparison with synthetic calcite of previous studies. Variations of element mass fractions in the calcite were better than 12% 2RSD, mostly within 7%. The 207Pb/206Pb ratio in the calcite showed < 1% variations, while the 238U/206Pb ratio showed 3–24% variations depending on element mass fractions. Using the synthetic calcite as primary RMs, we could date a natural calcite RM, WC‐1, with analytical uncertainty as low as < 3%. The method presented can be useful to produce calcite with controlled and homogeneous element mass fractions and is a promising alternative to natural calcite RMs for U‐Pb geochronology.  相似文献   
69.
We present oxygen and carbon isotope ratios and the morphological structure of the cultured freshwater pearl mussel (Hyriopsis sp., Unionidae) shell and pearl. The number of first-order fluctuations of δ18O of the outer shell layer along the maximum growth axis was consistent with the number of cultured years. The dominant factor controlling annual δ18O fluctuations was water temperature with a minor contribution from the variation in δ18O of ambient water, especially during the rainy season. The δ13C values were approximately constant throughout the life of the mussel, suggesting that the contributions of body size to δ13C of the shell were minor. We observed nine distinct disturbance rings on the outer surface of the shell. Five rings coincided with the five winter peaks of the δ18O profile, indicating winter growth cessation below approximately 10°C, probably because of either inactive growth at low water temperatures or reproduction. Summer disturbance rings were not observed in all years. Moreover, some summer rings showed discontinuity in the inner structure. These findings suggest that summer growth cessation may be caused by occasional events such as heavy rains, as the decrease of dissolved oxygen concentration. The δ18O profile and shell structures indicated that shell aragonite was precipitated at close to equilibrium conditions with respect to the oxygen isotope composition of the ambient water. Hyriopsis sp. shells can potentially be used for reconstruction of past hydrologic conditions. The δ18O of a pearl indicated that calcification occurred over a temperature range of at least 13–23°C. The optimal temperature for pearl calcification in this species is lower than that for marine pearl calcification.  相似文献   
70.
The stable nitrogen isotope ratio (δ 15N) in macroalgae is effectively used as a time-integrated bioindicator to record nitrogen sources for primary producers during their growing periods in aquatic ecosystems. However, the utility of this tool is limited because the occurrence of these organisms is often restricted in space and time. To investigate the potential of chemical composition in sedimentary organic matter (SOM) as a proxy for time-integrated environmental conditions, nitrogen (N) and carbon (C) contents and their stable isotope ratios (δ 15N and δ 13C) were determined, and systematically cross-checked against corresponding values in macroalgae at the Shiraho fringing reef in Okinawa, Japan. Preliminary trials showed that δ 15N in SOM processed by the “wash-out method” for δ 13C analysis yielded similar δ 15N values to the bulk sediment, despite the loss of some SOM during the process. The amounts of organic matter and the ratio of the HCl-insoluble portion were variable within the reef, probably reflecting local vegetation and subsequent decomposition. The distribution of δ 15N and δ 13C in SOM showed similar trends to those of macroalgae, with mostly constant differences of 1.4‰ and −6.7‰, respectively. These differences throughout the reef appeared to be explained in terms of mixed contributions from macrophyte and epibenthic microalgae growing in different seasons and years, with their debris undergoing diagenetic alteration. Therefore, macroalgae and SOM δ-values can be used in a complementary manner, over various time scales, as indicators of the integrated effect of dissolved inorganic nitrogen (DIN) sources on coral reef ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号