首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
地球物理   28篇
地质学   14篇
海洋学   4篇
天文学   2篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   1篇
  2010年   7篇
  2008年   6篇
  2007年   2篇
  2006年   6篇
  1974年   3篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
The present Pacific Ocean differs significantly in its structure and evolution from the expanding Atlantic Ocean. The Pacific is asymmetric. Its mid-ocean ridge is located not along its median line but is closer to South America and adjoins North America. The Pacific is surrounded by a ring of subduction zones but has marginal seas only at its Eurasian margins. After the breakup of Pangea, the Atlantic began to open and the Pacific began to close. This paper examines the evolution of the Pacific Ocean and, in particular, the formation mechanisms of its present structures. Numerical modeling of the long-term drift of a large continent is performed, with the initial position of the continent corresponding to the state after the breakup of the supercontinent. At first the continent, driven by the nearest descending mantle flow, begins to approach a subduction zone. Since the mantle flows beneath a large continent have different directions, its velocity is a few times lower than that of the mantle flows near the subduction zone. As a result, a zone of extension arises at the active continental margin and a fragment is broken off from the continent; this fragment rapidly moves away and stops above the descending mantle flow as in a trap. A marginal sea forms at the active continental margin. The continent continues its slow movement toward the subduction zone. The oceanic lithosphere, which earlier sank vertically, begins to descend obliquely. This evolutionary stage corresponds to the present position of Eurasia. The modeling shows how the interaction of the continent with the mantle causes the subduction zone to roll back toward the ocean. Subsequently, the continent nevertheless catches up with the subduction zone, and they move together for a while. The marginal sea then closes and high compressive stresses arise at the active continental margin. This state corresponds to the present position of South America. During the subsequent drift, the continent together with the subduction zone reaches the mid-ocean ridge and partially overrides it. This state corresponds to North America, which was the first to break off from Pangea and passed through the stages of both Eurasia and South America. The large and slowly moving Eurasia, which formed only at the time of Pangea, is still in the first evolutionary stage of the Pacific Ocean closure.  相似文献   
12.
An endothermic phase transition at a depth of 660 km in the mantle partially slows down mantle flows. Many models considering the possibility of temporary layering of flows with separation of convection in the upper and lower mantle have been constructed over the past two decades. The slowing-down effect of the endothermic phase transition is very sensitive to the slope of the phase-equilibrium curve. However, laboratory measurements contain considerable uncertainties admitting both a partial convection layering and only an insignificant slowing down of a part of downgoing mantle flows. In this work, we present results of calculations of mantle flows within a wide range of phase-transition parameter values, determine ranges of one-and two-layer convection, and derive dependences of the amplitude and period of oscillations on phase-transition parameters.  相似文献   
13.
Light continents and islands characterized by a crustal thickness of more than 30 km float over a convective mantle, while the thin basaltic oceanic crust sinks completely in subduction zones. The normal oceanic crust is 7 km thick. However, anomalously thick basaltic plateaus forming as a result of emplacement of mantle plumes into moving oceanic lithospheric plates are also pulled into the mantle. One of the largest basaltic plateaus is the Ontong Java plateau on the Pacific plate, which arose during the intrusion of a giant superplume into the plate ~100 Myr ago. Notwithstanding its large thickness (averaging ~30 km), the Ontong Java plateau is still experiencing slow subduction. On the basis of numerical modeling, the paper analyzes the oceanic crust subduction process as a function of the mantle convection vigorousness and the density, thickness, viscosity, and shape of the crust. Even a simplified model of thermocompositional convection in the upper mantle is capable of explaining the observed facts indicating that the oceanic crust and sediments are pulled into the mantle and the continental crust is floating on the mantle.  相似文献   
14.
The process of multiple self-nucleation and ascent of mantle plumes is studied in the numerical models of thermal convection. The plumes are observed even in the simplest isoviscous models of thermal convection that leave aside the more complex rheology of the material, thermochemical effects, phase transformations, etc., which, although controlling the features of plumes, are not necessary for their formation. The origin of plumes is mainly due to the instability of the mantle flows at highly intense (low-viscous) thermal convection. At high viscosity, convective flows form regular cells. As viscosity decreases, the ascending and descending flows become narrower and unsteady. At a further decrease in viscosity, the ascending plumes assume a mushroom-like shape and occasionally change their position in the mantle. The lifetime of each flow can attain 100 Ma. Using markers allows visualizing the evolution of the shape of the mantle plumes.  相似文献   
15.
The formation of the thermal cross section of the lithosphere and mantle upon the interaction between the mantle convection and the immobile continent surrounded by the oceanic lithosphere is studied by numerical modeling. The convective temperature and velocity fields and then the averaged geotherms for subcontinental and suboceanic regions up to the boundary with the core are calculated from the solution of convection equations with a jump in viscosity in the continental zone. Using the experimental data on the solidus temperature in the rocks of the upper mantle, the average thickness of the continental and oceanic lithosphere is estimated at 190 and 30 km, respectively. The effect of a hot spot formed in the subcontinental upper mantle at a depth of 250–500 km, which has not been previously noted, is revealed. Although the temperature in this zone is typically assumed to be close to adiabatic, the calculations show that it is actually higher than adiabatic by up to 200°C. The physical mechanism responsible for this effect is associated with the accumulation of convective heat beneath the thermally insulating layer of the continental lithosphere. The revealed anomalies can be important in studying the phase and mineral transformations at the base of the lithosphere and in the regional geodynamical reconstructions.  相似文献   
16.
17.
The model of elastic rebound of thin plates is considered to account for GPS-inferred surface deformation of plates during subduction earthquakes on the example of the M9 earthquake that occurred in Japan in 2011. Due to the fact that the oceanic plate moves together with a great mass of the convective mantle, it dips into the mantle at constant velocity all the time, both during the earthquakes and in the periods between them, although its coupling with the continental plate changes. The edge of the continental plate behaves as an elastic plate that permanently bends under the action of the friction force on contact with the diving oceanic plate. The bent plate unbends after the earthquake. This leads to its thrusting over the subducting oceanic plate. As a result, the island plate moves towards the ocean, its island part sinks, and the oceanic plate uplifts leading to a tsunami. The coordinates and magnitudes of the rise and subsidence correspond to the universal relations in the elastic plate model. The breaking of coupling of the continental plate with the submarine mountains and a basaltic plateau of the dipping plate is considered as a possible explanation of the anomalous properties of the strongest earthquakes. The main earthquake can be produced by partial destruction of a plateau or a large mountain. After this, the locked plates become free along a great area in an avalanche-like manner, and the friction of rest gives place to sliding friction.  相似文献   
18.
Intraplate earthquakes are described by a model of a thrust fault in continuous or cracked media. Such a model can also be used to describe interplate earthquakes, in particular, strong earthquakes in subduction zones. However, new seismic, tectonic, and GPS data for this strong Japanese earthquake demand a more detailed model. One possible model can be a model of the elastic island plate coupled with a dipping oceanic plate with submarine mountings. These mountings, sitting on the dipping oceanic plate, hinder its motion due to coupling with asperities on the bottom of the island plate. When coupling ends, the bottom of the plate can be cut as if by a plough and an earthquake can take place. The decoupling of a mountain leads to a weaker interpolate earthquake, a forshock, and an aftershock. The main earthquake is a result of the effect of a basaltic plateau or a large mountain, which leads to the avalanching decoupling of all mountains on a large area of coupled plates. In the first approximation we can consider that, despite its deformation, an oceanic plate is constantly moving with a nearly constant velocity all times both during earthquakes and in between them. An island plate behaves similarly to an elastic plate, which permanently bends due to torque acting on its junction with a dipping oceanic plate. After the earthquake, the bending plate becomes straight. This leads to it thrusting on the oceanic plate with displacement toward the ocean, an uplift of its oceanic part, and the sinking of its island part by the following tsunami.  相似文献   
19.
In the kinematic theory of lithospheric plate tectonics, the position and parameters of the plates are predetermined in the initial and boundary conditions. However, in the self-consistent dynamical theory, the properties of the oceanic plates (just as the structure of the mantle convection) should automatically result from the solution of differential equations for energy, mass, and momentum transfer in viscous fluid. Here, the viscosity of the mantle material as a function of temperature, pressure, shear stress, and chemical composition should be taken from the data of laboratory experiments. The aim of this study is to reproduce the generation of the ensemble of the lithospheric plates and to trace their behavior inside the mantle by numerically solving the convection equations with minimum a priori data. The models demonstrate how the rigid lithosphere can break up into the separate plates that dive into the mantle, how the sizes and the number of the plates change during the evolution of the convection, and how the ridges and subduction zones may migrate in this case. The models also demonstrate how the plates may bend and break up when passing the depth boundary of 660 km and how the plates and plumes may affect the structure of the convection. In contrast to the models of convection without lithospheric plates or regional models, the structure of the mantle flows is for the first time calculated in the entire mantle with quite a few plates. This model shows that the mantle material is transported to the mid-oceanic ridges by asthenospheric flows induced by the subducting plates rather than by the main vertical ascending flows rising from the lower mantle.  相似文献   
20.
Based on data of seismic tomography, the structure of the mantle flows of the contemporary Earth and the continental drift are calculated. Results of calculation of the contemporary motion of continents and their future drift for 150 Myr are presented. The present-day positions of six continents and the nine largest islands are taken as an initial state. The contemporary temperature distribution in the mantle is calculated according to the data of seismic tomography. The 3-D distribution of seismic wave velocities is converted into the density distribution and then into the temperature distribution. The Stokes equation is numerically solved for flows in a viscous mantle with floating continents for the given initial temperature distribution. In this way, the velocities of convective flows are determined in the entire present-day mantle and the surface distribution for the Earth’s heat flux is obtained. The reliability of the calculated flows in the mantle is estimated by the comparison of the calculated velocities of the contemporary continents and oceanic lithosphere with data of satellite measurements. Further, evolutionary equations of convection with floating continents were numerically solved. The calculated structure of mantle flows, temperature distribution, and position of continents are presented for a time moment 150 Myr in the future. The resulting successive changes in the position of continents in time show how islands (in particular, Japan and Indonesia) will be attached to continents and how continents will converge, exhibiting a tendency toward the formation of a new supercontinent in the southern hemisphere of the Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号