首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   7篇
测绘学   3篇
大气科学   8篇
地球物理   51篇
地质学   27篇
海洋学   50篇
天文学   29篇
综合类   4篇
自然地理   9篇
  2024年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   7篇
  2010年   7篇
  2009年   8篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   15篇
  2004年   7篇
  2003年   8篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
51.
Resistivity structure of a seismic gap along the Atotsugawa Fault, Japan   总被引:1,自引:0,他引:1  
Seismicity along the Atotsugawa Fault, located in central Japan, shows a clear heterogeneity. The central segment of the fault with low-seismicity is recognized as a seismic gap, although a lot of micro-earthquakes occur along this fault. In order to elucidate the cause of the heterogeneity in seismicity, the electrical resistivity structure was investigated around the Atotsugawa Fault by using the magnetotelluric (MT) method. The regional geoelectrical strikes are approximately parallel to the fault in a low-frequency range. We constructed two-dimensional resistivity models across the fault using TM-mode MT responses to minimize three-dimensional effects on the modeling process. A smooth inversion algorithm was used, and the static-shifts on the apparent resistivity were corrected in the inversion process.A shallow, low resistivity zone along the fault is found from the surface to a depth of 1-2 km in the best-fit model across the high-seismicity segment of the fault. On the other hand, the corresponding low resistivity zone along the low-seismicity segment is limited to a shallower depth less than 1 km. The low resistivity zone along the Atotsugawa Fault is possibly due to fluid in the fracture zone; the segment with higher levels of seismicity may have higher fluid content in the fault zone compared with the lower seismicity segment. On a view of the crustal structure, a lateral resistivity variation in a depth range of 3-12 km is found below the fault trace in the high-seismicity segment, while a resistive layer of wide extent is found at a depth of about 5 km below the fault trace in the low-seismicity segment. The resistive layer is explained by less fluid condition and possibly characterized as high rigidity. Differences in the resistivity structures between low and high-seismicity segments of the fault suggest that the seismic gap in the central part of the Atotsugawa Fault may be interpreted as a locked segment. Thus, MT is an effective method in evaluating a cause and future activity of seismic gaps along active faults.The lower crust appears as a conductive zone beneath the low-seismicity segment, less conductive beneath the high-seismicity segment. Fluid is inferred as a preferable cause of the conductive zone in this study. It is suggested that the conductive lower crust beneath the low-seismicity segment is recognized where fluid is trapped by an impermeable layer in the upper crust. On the other hand, fluid in the lower crust may upwell to the surface along the high-seismicity segment of the fault.  相似文献   
52.
Hiroyuki  Ishimoto  Kenji  Shuto  Yoshihiko  Goto 《Island Arc》2006,15(2):251-268
Abstract   Middle Miocene to Quaternary primitive basalts and high magnesian andesite (HMA) in North Hokkaido resulted from three periods of intense volcanism; early-stage (12–10 Ma), middle-stage (9–7 Ma) and late-stage (3–0 Ma). Based on the chemical compositions of olivines and chromian spinels and bulk chemistry of the primitive rocks, we examined depths of segregation of the calculated primary magmas and the degrees of partial melting of the source mantle. In the context of asthenospheric mantle upwelling, petrological data from the present study can be accounted for by the secular change in the depth of magma segregation from the upwelled asthenospheric mantle, which is composed of fertile peridotite. Thus, the early-stage primary magmas were generated by higher degrees of partial melting of the shallower part of hot asthenospheric mantle, whereas the middle- and late-stage primary magmas resulted from lower degrees of partial melting of a deeper part of the asthenospheric mantle. The early-stage HMA magma was generated by partial melting of the remnant subcontinental lithospheric mantle composed of refractory peridotite. This melting might have resulted from an increased geothermal gradient caused by upwelling of hot asthenosphere.  相似文献   
53.
Momo-iwa, Rebun Island, Hokkaido, Japan, is a dacite cryptodome 200–300 m across and 190 m high. The dome is inferred to have intruded wet, poorly consolidated sediment in a shallow marine environment. The internal structure of the dome is concentric, with a massive core, banded rim, and narrow brecciated border, all of which are composed of compositionally uniform feldspar-phyric dacite. Boundaries between each of the zones are distinct but gradational. The massive core consists of homogeneous coherent (unfractured) dacite and is characterized by radial columnar joints 60–200 cm across. The banded rim encircles the massive core and is 40 m wide. It is characterized by large-scale flow banding parallel to the dome surface. The flow banding comprises alternating partly crystalline and more glassy bands 80–150 cm thick. The outermost brecciated border is up to 80 cm thick, and consists of in situ breccia and blocky peperite. The in situ breccia comprises polyhedral dacite clasts 5–20 cm across and a cogenetic granular matrix. The blocky peperite consists of polyhedral dacite clasts 0.5–2 cm across separated by the host sediment (mudstone). The internal structures of the dome suggest endogenous growth involving a continuous magma supply during a single intrusive phase and simple expansion from the interior. Although much larger, the internal structures of Momo-iwa closely resemble those of lobes in subaqueous felsic lobe-hyaloclastite lavas.  相似文献   
54.
The Hyuga-nada Sea, south-eastern Kyushu, Japan, is located between a strong (Nankai Trough) and a weak interplate coupling zone (Ryukyu Trench). Over the past 400 years this area has only experienced Magnitude 7·5 earthquakes or smaller and associated small-scale tsunamis. However, this short historical record most likely does not include the full range of high magnitude, low frequency giant earthquakes that might have occurred in the region. Thus, it is still unclear whether giant earthquakes and their associated tsunamis have occurred in this region. This paper reports on a prehistoric tsunami deposit discovered in a coastal lowland in south-eastern Kyushu facing the Hyuga-nada Sea. There is a reddish-brown pumiceous layer preserved in a non-marine, organic-rich mud sequence obtained from onshore sediment cores. This layer is recognized as the ca 4600 year old Kirishima-Miike tephra (that is now placed around 4500 years ago) sourced from Mount Kirishima, southern Kyushu. Another whitish pumiceous layer is evident below the Kirishima-Miike tephra in almost all of the sediment cores. A relatively high percentage of marine and brackish diatoms is recorded within this lower pumiceous layer (but not in the surrounding muds or in the overlying Kirishima-Miike tephra), indicating a marine or beach sediment source. Plant material obtained from organic-rich mud immediately below the event layer was dated to ca 4430 to 4710 cal yr bp , providing a limiting-maximum age for this marine incursion event. The presence of marine diatoms below the event layer is probably explained by pre-seismic subsidence. An absence of the resting spore of the planktonic brackish diatom Cheatoceros and the appearance of the freshwater diatom Eunotia serra immediately above the event layer probably represents a marked change to a relatively low-salinity environment. Assuming that there were no significant local geomorphological changes, such as drainage obstruction caused by formation of a new barrier spit, it is considered that co-seismic or immediate post-seismic uplift are the most likely explanations for this notable environmental change. Based on the crustal movements noted before and after the marine incursion, this event is interpreted here as an earthquake-generated tsunami. Moreover, because of these notable seismic crustal movements the tsunamigenic earthquake probably occurred immediately offshore of the study site.  相似文献   
55.
This study investigated geological evidence for near-surface crustal deformation in a high-strain shear zone that has been geodetically identified but which is not associated with obvious tectonic landforms. Fieldwork was conducted in the east–west-trending southern Kyushu high-strain shear zone (SKHZ), Japan, focusing mainly on occurrences of fracture zones, which are defined by a visible fracture density of >1 per 10 cm2 and are commonly associated with cataclasite, fault breccia, and gouge. The area in which east–west-trending fracture zones are dominant is restricted to the east–west-trending, ~2-km-wide aftershock area of the 1997 Northwestern Kagoshima Earthquakes. Analysis of slip data from minor faults using the multiple inverse method, irrespective of whether the faults are in fracture zones, reveals that the area where the calculated main stress field is consistent with the current stress field estimated from focal-mechanism solutions of microearthquakes is restricted to the east–west-trending aftershock area. This finding for the SKHZ contrasts with the case of the Niigata–Kobe Tectonic Zone, which is a major strain-concentration zone with many exposed active faults in central Japan and for which the stress field estimated using fault-slip data is considered to be uniform and coincides with the current stress field. The cumulative amount of displacement estimated from the areal density of fracture zones in the SKHZ study area is smaller than that estimated from geodetically measured strain rates. Investigations based on slip data from minor faults and fracture-zone occurrence could help to identify concealed faults that are too small to generate tectonic landforms but which are sufficiently large to trigger major earthquakes.  相似文献   
56.
57.
58.
The tsunami of 2004 in the Indian Ocean transported thousands of meters-long boulders shoreward at Pakarang Cape, Thailand. We investigated size, position and long axis orientation of 467 boulders at the cape. Most of boulders found at the cape are well rounded, ellipsoid in shape, without sharp broken edges. They were fragments of reef rocks and their sizes were estimated to be < 14m3 (22.7t). The distribution pattern and orientation of long axis of boulders reflect the inundation pattern and behavior of the tsunami waves. It was found that there is no clear evidence indicating monotonous fine/coarse shoreward trends of these boulders along each transect line. On the other hand, the large boulders were deposited repeatedly along the three arcuate lines at the intertidal zone with a spacing of approximately 136m interval. This distribution pattern may suggest that long-lasting oscillatory flows might have repositioned the boulders and separated the big ones from small. No boulders were found on land, indicating that the hydraulic force of the tsunami wave rapidly dissipated on reaching the land due to the higher bottom friction and the presence of a steep slope. We further conducted numerical calculation of tsunami inundation at Pakarang Cape. According to the calculation, the sea receded and the major part of the tidal bench (area with boulders at present) was exposed above the sea surface before the arrival of the first tsunami wave. The first tsunami wave arrived at the cape from west to east at approximately 130min after the tsunami generation, and then inundated inlands. Our calculation shows that tsunami wave was focused around the offshore by a small cove at the reef edge and spread afterwards in a fan-like shape on the tidal bench. The critical wave velocities necessary to move the largest and average-size boulders by sliding can be estimated to be approximately 3.2 and 2.0m/s, respectively. The numerical result indicates that the maximum current velocity of the first tsunami wave was estimated to be from 8 to 15m/s between the reef edge and approximately 500m further offshore. This range is large enough for moving even the largest boulder shoreward. These suggest that the tsunami waves that were directed eastward, struck the reef rocks and coral colonies, originally located on the shallow sea bottom near the reef edge, and detached and transported the boulders shoreward.  相似文献   
59.
60.
The temporal variation of the total dissolved inorganic carbon (DIC) content in the western North Pacific is investigated by comparing the DIC distribution obtained from the data sets of three different periods, the GEOSECS data observed in 1973, the CO2 dynamics Cruise data observed in 1982, and recent Japanese data sets observed during the early 1990s. The overall feature of the signal of temporal DIC change during 1973 and early 1990s agreed with that of former studies, and did not significantly change with the calculation scheme (the grid-selection method vs. the multiple regression method). The observed increase in DIC among the different time scales showed a good inner consistency, which also indicates the stability of the method used in the DIC change calculation. The apparent rate of increase of the DIC inventory in the upper 1000 m water column, however, differed significantly by the data set used for the calculation: It was 5.6±2.4 g C/m2/year, based on the data comparison between 1982 and the early 1990s, while it became 7.6±2.4 g C/m2/year when based on the data between 1973 and the early 1990s. This result provides us an information about the data-dependency on the former estimation of temporal DIC change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号