首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   3篇
  国内免费   3篇
测绘学   10篇
大气科学   14篇
地球物理   19篇
地质学   66篇
海洋学   23篇
天文学   21篇
综合类   3篇
自然地理   4篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   3篇
  2014年   13篇
  2013年   10篇
  2012年   8篇
  2011年   11篇
  2010年   10篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   9篇
  2004年   3篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
51.
An inclusion model, based on the Kuster–Toksöz effective medium theory along with Gassmann theory, is tested to forward model velocities for fluid-saturated rocks. A simulated annealing algorithm, along with the inclusion model, effectively inverts measured compressional velocity (VP) to achieve an effective pore aspect ratio at each depth in a depth variant manner, continuously along with depth. Early Cretaceous syn-rift clastic sediments at two different depth intervals from two wells [well A (2160–2274 m) and well B (5222–5303 m)], in the Krishna–Godavari basin, India, are used for this study. Shear velocity (VS) estimated using modelled pore aspect ratio offers a high correlation coefficient (>0.95 for both the wells) with measured data. The modelled pore aspect ratio distribution suggests the decrease in pore aspect ratio for the deeper interval, mainly due to increased effective vertical stress. The pore aspect ratio analysis in relation to total porosity and volume of clay reveals that the clay volume has insignificant influence in shaping the pore geometry in the studied intervals. An approach based on multiple linear regression method effectively predicts velocity as a linear function of total porosity, the volume of clay and the modelled pore-space aspect ratio of the rock. We achieved a significant match between measured and predicted velocities. The correlation coefficients between measured and modelled velocities are considerably high (approximately 0.85 and 0.8, for VP and VS, respectively). This process indicates the possible influence of pore geometry along with total porosity and volume of clay on velocity.  相似文献   
52.
During urban development, the land surface is changed from undisturbed soils with natural vegetative cover to disturbed soils, managed landscapes, and built materials [2]. The change in land uses causes the stormwater runoff from impervious areas to be as much as 16 times higher than from natural areas [5] which implies increase of frequency of local flooding and more contribution to the streams carrying urbanized runoff. The main streams in the periphery of city Chandigarh, India are Patiali ki Rao and Sukhna Choe. This study focuses on the identification and development of a real time model for prediction of increase in stormwater runoff to the streams and within the watershed of Chandigarh due to urbanization. The study has undertaken hydraulic modeling of Sukhna Choe using United States Army Corps of Engineers Hydraulic Engineering Centre River Analysis System (HEC-RAS) to understand the urgent need of control of stormwater runoff to deal with flooding issues of the city. It has been concluded from this study that the condition of streams has been deteriorating from past to present to future condition of development and the predicted HEC-RAS water surface elevations can be put into effect to plan further development in the city.  相似文献   
53.
Life cycle of glaciers in the Himalayan region has notably changed due to the climatic variability since last few decades. Glaciers across the world and specially the Himalayan glaciers have shown large scale degeneration in the last few decades. Himalayan glaciers serve as an important fresh water resource for the downstream communities, who are dependent on this water for domestic and other purposes. Therefore, glacier shrinkage and the associated hydrological changes pose a significant problem for regional-scale water budgets and resource management. These issues necessitate the regular and rigorous monitoring of the wastage pattern of the Himalayan glaciers in field and using satellite remote sensing data. In this work, we report rapid and enhanced degeneration of the frontal part of the Kangriz glacier, Jammu and Kashmir(J K), in terms of surface melting, debris cover, snout characteristics and meltwater discharge. Ablation data acquired during 2016-2017 shows the average lowering of the frontal part of the glacier to be ~148 ± 34 cm, one-third of which was found to have occurred within a 13 day time period in September, 2017. Also, the quantum of ice melt was found to be inversely influenced(r =-0.84) by the debris thickness. 15 day meltwater discharge measurement revealed its strong relationship with snout disintegration pattern, evidenced twice during the said time period. Volume of water discharged from the glacier was estimated to be 7.91×10~6 m~3 for the measurement duration. Also, mean daily discharge estimated for the 15 days interval showed good positive correction(r = 0.78) with temperature indicating the direct dependency of the former on land surface temperature conditions of the region. Besides the lowering and discharge observations, the frequent ice-block break-offs at the glacier snout further enhance its overall drastic degeneration. The study suggests that, being the largest glacier in the Suru basin, the Kangriz glacier needs to be continuously monitored in order to understand its glacio-hydrological conditions.  相似文献   
54.
55.
Uncertainty Analysis in Atmospheric Dispersion Modeling   总被引:1,自引:0,他引:1  
The concentration of a pollutant in the atmosphere is a random variable that cannot be predicted accurately, but can be described using quantities such as ensemble mean, variance, and probability distribution. There is growing recognition that the modeled concentrations of hazardous contaminants in the atmosphere should be described in a probabilistic framework. This paper discusses the various types of uncertainties in atmospheric dispersion models, and reviews sensitivity/uncertainty analysis methods to characterize and/or reduce them. Evaluation and quantification of the range of uncertainties in predictions yield a deeper insight into the capabilities and limitations of atmospheric dispersion models, and increase our confidence in decision-making based on models.  相似文献   
56.
Understanding the principal causes and possible solutions for groundwater depletion in India is important for its water security, especially as it relates to agriculture. A study was conducted in an agricultural watershed in Andhra Pradesh, India to assess the impacts on groundwater of current and alternative agricultural management. Hydrological simulations were used as follows: (1) to evaluate the recharge benefits of water‐harvesting tillage through a modified Soil and Water Assessment Tool (SWAT) model and (2) to predict the groundwater response to changing extent and irrigation management of rice growing areas. The Green–Ampt infiltration routine was modified in SWAT was modified to represent water‐harvesting tillage using maximum depression storage parameter. Water‐harvesting tillage in rainfed croplands was shown to increase basin‐scale groundwater recharge by 3% and decrease run‐off by 43% compared with existing conventional tillage. The groundwater balance (recharge minus irrigation withdrawals), negative 11 mm/year under existing management changed to positive (18–45 mm/year) when rice growing areas or irrigation depths were reduced. Groundwater balance was sensitive to changes in rice cropland management, meaning even small changes in rice cropland management had large impacts on groundwater availability. The modified SWAT was capable of representing tillage management of varying maximum depression storage, and tillage for water‐harvesting was shown to be a potentially important strategy for producers to enhance infiltration and groundwater recharge, especially in semi‐arid regions where rainfall may be becoming increasingly variable. This enhanced SWAT could be used to evaluate the landscape‐scale impacts of alternative tillage management in other regions that are working to develop strategies for reducing groundwater depletion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
57.
Utility of Hyperspectral Data for Potato Late Blight Disease Detection   总被引:1,自引:0,他引:1  
The study was carried out to investigate the utility of hyperspectral reflectance data for potato late blight disease detection. The hyperspectral data was collected for potato crop at different level of disease infestation using hand-held spectroradiometer over the spectral range of 325–1075 nm. The data was averaged into 10-nm wide wavebands, resulting in 75 narrowbands. The reflectance curve was partitioned into five regions, viz. 400–500 nm, 520–590 nm, 620–680 nm, 770–860 nm and 920–1050 nm. The notable differences in healthy and diseased potato plants were noticed in 770–860 nm and 920–1050 nm range. Vegetation indices, namely NDVI, SR, SAVI and red edge were calculated using reflectance values. The differences between the vegetation indices for plants at different levels of disease infestation were found highly significant. The optimal hyperspectral wavebands to discriminate the healthy plants from disease infested plants were 540, 610, 620, 700, 710, 730, 780 and 1040 nm whereas upto 25% infestation could be discriminated using reflectance at 710, 720 and 750 nm.  相似文献   
58.
During the India National Gas Hydrate Program (NGHP) Expedition 01 in 2006 significant sand and gas hydrate were recovered at Site NGHP-01-15 within the Krishna–Godavari Basin, East Coast off India. At the drill site NGHP-01-15, a 5–8 m thick interval was found that is characterized by higher sand content than anywhere else at the site and within the KG Basin. Gas hydrate concentrations were determined to be 20–40% of the pore volume using wire-line electrical resistivity data as well as core-derived pore-fluid freshening trends. The gas hydrate-bearing interval was linked to a prominent seismic reflection observed in the 3D seismic data. This reflection event, mapped for about 1 km2 south of the drill site, is bound by a fault at its northern limit that may act as migration conduit for free gas to enter the gas hydrate stability zone (GHSZ) and subsequently charge the sand-rich layer. On 3D and additional regional 2D seismic data a prominent channel system was imaged mainly by using the seismic instantaneous amplitude attribute. The channel can be clearly identified by changes in the seismic character of the channel fill (sand-rich) and pronounced levees (less sand content than in the fill, but higher than in surrounding mud-dominated sediments). The entire channel sequence (channel fill and levees) has been subsequently covered and back-filled with a more mud-prone sediment sequence. Where the levees intersect the base of the GHSZ, their reflection strengths are significantly increased to 5- to 6-times the surrounding reflection amplitudes. Using the 3D seismic data these high-amplitude reflection edges where linked to the gas hydrate-bearing layer at Site NGHP-01-15. Further south along the channel the same reflection elements representing the levees do not show similarly large reflection amplitudes. However, the channel system is still characterized by several high-amplitude reflection events (a few hundred meters wide and up to ~ 1 km in extent) interpreted as gas hydrate-bearing sand intervals along the length of the channel.  相似文献   
59.
Abstract

A hydrological modelling framework was assembled to simulate the daily discharge of the Mandovi River on the Indian west coast. Approximately 90% of the west-coast rainfall, and therefore discharge, occurs during the summer monsoon (June–September), with a peak during July–August. The modelling framework consisted of a digital elevation model (DEM) called GLOBE, a hydrological routing algorithm, the Terrestrial Hydrological Model with Biogeochemistry (THMB), an algorithm to map the rainfall recorded by sparse raingauges to the model grid, and a modified Soil Conservation Service Curve Number (SCS-CN) method. A series of discharge simulations (with and without the SCS method) was carried out. The best simulation was obtained after incorporating spatio-temporal variability in the SCS parameters, which was achieved by an objective division of the season into five regimes: the lean season, monsoon onset, peak monsoon, end-monsoon, and post-monsoon. A novel attempt was made to incorporate objectively the different regimes encountered before, during and after the Indian monsoon, into a hydrological modelling framework. The strength of our method lies in the low demand it makes on hydrological data. Apart from information on the average soil type in a region, the entire parameterization is built on the basis of the rainfall that is used to force the model. That the model does not need to be calibrated separately for each river is important, because most of the Indian west-coast basins are ungauged. Hence, even though the model has been validated only for the Mandovi basin, its potential region of application is considerable. In the context of the Prediction in Ungauged Basins (PUB) framework, the potential of the proposed approach is significant, because the discharge of these (ungauged) rivers into the eastern Arabian Sea is not small, making them an important element of the local climate system.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi

Citation Suprit, K., Shankar, D., Venugopal, V. and Bhatkar, N.V., 2012. Simulating the daily discharge of the Mandovi River, west coast of India. Hydrological Sciences Journal, 57 (4), 686–704.  相似文献   
60.
Theoretical and Applied Climatology - Selection of a best suited satellite-based gridded rainfall product (SGRP) is challenging due to their significant variations at spatial and temporal scale....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号