首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   4篇
测绘学   5篇
大气科学   3篇
地球物理   18篇
地质学   67篇
海洋学   17篇
天文学   24篇
自然地理   5篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   10篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   5篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有139条查询结果,搜索用时 46 毫秒
41.
In this paper we assemble and analyze quantitative annual input-export budgets for total nitrogen (TN) and total phosphorus (TP) for Chesapeake Bay and three of its tributary estuaries (Potomac, Patuxent, and Choptank rivers). The budgets include estimates of TN and TP sources (point, diffuse, and atmospheric), internal losses (burial in sediments, fisheries yields, and denitrification), storages in the water column and sediments, internal cycling rates (zooplankton excretion and net sediment-water flux), and net downstream exchange. Annual terrestrial and atmospheric inputs (average of 1985 and 1986 data) of TN and TP ranged from 4.3 g TN m?2 yr?1 to 29.3 g TN m?2 yr?1 and 0.32 g TP m?2 yr?1 to 2.42 g TP m?2 yr?1, respectively. These rates of TN and TP input represent 6-fold to 8-fold and 13-fold to 24-fold increases in loads to these systems since the precolonial period. A recent 11-yr record for the Susquehanna River indicates that annual loads of TN and TP have varied by about 2-fold and 4-fold, respectively. TN inputs increased and TP inputs decreased during the 11-yr period. The relative importance of nutrient sources varied among these estuaries: point sources of nutrients delivered about half the annual TN and TP load to the Patuxent and nearly 60% of TP inputs to the Choptank; diffuse sources contributed 60–70% of the TN and TP inputs to the mainstream Chesapeake and Potomac River. The direct deposition of atmospheric wet-fall to the surface waters of these estuaries represented 12% or less of annual TN and TP loads except in the Choptank River (37% of TN and 20% of TP). We found direct, although damped, relationships between annual rates of nutrient input, water-column and sediment nutrient stocks, and nutrient losses via burial in sediments and denitrification. Our budgets indicate that the annual mass balance of TN and TP is maintained by a net landward exchange of TP and, with one exception (Choptank River), a net seaward transport of TN. The budgets for all systems revealed that inorganic nutrients entering these estuaries from terrestrial and atmospheric sources are rapidly converted to particulate and organic forms. Discrepancies between our budgets and others in the literature were resolved by the inclusion of sediments derived from shoreline erosion. The greatest potential for errors in our budgets can be attributed to the absence of or uncertainties in estimates of atmospheric dry-fall, contributions of nutrients via groundwater, and the sedimentation rates used to calculate nutrient burial rates.  相似文献   
42.
In tropical and sub-tropical slopes, soil suction may in certain circumstances play a role in maintaining slope stability. Resistance envelope methods are outlined that provide a means of assessing the threshold soil water conditions for stability. In addition, this technique enables the likely failure depth to be identified. Application to slopes in St. Lucia, West Indies, show the accordance of resistance envelope predictions with stability analysis results. A methodology for the geomorphological investigation of stability processes in tropical slopes is proposed.  相似文献   
43.
Estuaries and Coasts - Effects of the herbicide, atrazine, on the submersed vascular plant,Potamogeton perfoliatus, were monitored for 4 wk in 700 l microcosms containing water, sediments and...  相似文献   
44.
45.
The manganese carbonate deposits of the anoxic Littorina sediments of the Gotland Deep have been commonly related to the periodic renewal of deep water by inflowing saline water from the North Sea. The use of scanning electron microscopy-based techniques allows identification of small-scale sedimentary and geochemical features associated with Mn-carbonate laminae, which has significant implications for models of Mn-carbonate formation. Varves occurring in the Littorina sequence contain up to four laminae that may be placed in a seasonal cycle, and kutnahorite laminae occur within varves only as a winter-early spring deposit. This kutnahorite laminae seasonality is in agreement with the seasonal distribution of major Baltic inflow events recorded in historical records, and a direct causal link between inflows and kutnahorite deposition is implied. Benthic foraminifera tests are found to be heavily encrusted in kutnahorite, implying that benthic recolonization during oxidation events occurs concurrently with kutnahorite formation. The relatively common occurrence of small (50 to 100 μm) hexagonal γ-Mn-sulfide pseudomorphs, associated with 13% of kutnahorite laminae studied, is reported in Gotland Deep sediments for the first time. Although Mn-sulfide crystals are not usually preserved in the sediment, the discovery of Mn-sulfide pseudomorphs suggests that initial formation of Mn-sulfide in the Gotland Deep may occur much more commonly during the process of kutnahorite formation than previous reports of Mn-sulfide occurrence have implied.  相似文献   
46.
GIS technology allowed us to examine species-specific occurrence and abundance patterns of important grassland herbivore species through the use of appropriate statistical methods and the superior spatial representation commonly available in existing GIS packages. The study was conducted on a 254 ha grassland area located 10 km south of Three Forks, Gallatin County, Montana, in the Agropyron spicatum province of the western steppe region of the U.S.A. From an ecological perspective, grasshopper species distribution and abundance patterns observed on a local, non-uniform landscape (2.6 km 2) were consistent with results found in other studies at the valley (≈1,400 km 2) and state-level (≈237,000 km 2) scales. Our observations at the local scale further demonstrate the importance of vegetation type and specific local stand physiognomies in structuring grasshopper populations. The application of results from studies conducted at various scales to the development of decision support tools for resource managers is also discussed.  相似文献   
47.
The hottentot seabream Pachymetopon blochii is a small-sized (maximum 2.67 kg) sparid endemic to southern Africa. It is an important target in South Africa's Western Cape traditional linefishery, particularly in the absence of more valuable pelagic species (such as Thyrsites atun and Seriola lalandi). In 2000, South Africa's linefishery was declared to be in a state of emergency, and commercial fishing effort was consequently reduced by 70%. A subsequent increase in stock biomass and intraspecific competition, coupled with environmental changes, were hypothesised to have thereafter altered the growth rate of hottentot, from 2000 to 2010. This study aimed to revise outdated age–growth models for the hottentot by using modern techniques (sectioned otoliths), and to compare age–growth relationships before and after the declared linefish state of emergency. The maximum age observed was 19 years, with no difference in the growth rate between sexes (p = 0.39–0.43) or time-periods (p = 0.96). Although the growth rate did not change, there is evidence that the age structure of the stock changed between time-periods as a result of changes in fishing pressure between 2000 and 2010. The enhanced recent growth model for hottentot, described as Lt = 418.063 (1 – e?0.104(t – [?4.709])) (pooled sexes; n = 206), indicates a considerably slower growth rate for this species than was proposed previously using whole otoliths and has major implications for effective stock management.  相似文献   
48.
Potential climate-change impacts on the Chesapeake Bay   总被引:1,自引:0,他引:1  
We review current understanding of the potential impact of climate change on the Chesapeake Bay. Scenarios for CO2 emissions indicate that by the end of the 21st century the Bay region will experience significant changes in climate forcings with respect to historical conditions, including increases in CO2 concentrations, sea level, and water temperature of 50–160%, 0.7–1.6 m, and 2–6 °C, respectively. Also likely are increases in precipitation amount (very likely in the winter and spring), precipitation intensity, intensity of tropical and extratropical cyclones (though their frequency may decrease), and sea-level variability. The greatest uncertainty is associated with changes in annual streamflow, though it is likely that winter and spring flows will increase. Climate change alone will cause the Bay to function very differently in the future. Likely changes include: (1) an increase in coastal flooding and submergence of estuarine wetlands; (2) an increase in salinity variability on many time scales; (3) an increase in harmful algae; (4) an increase in hypoxia; (5) a reduction of eelgrass, the dominant submerged aquatic vegetation in the Bay; and (6) altered interactions among trophic levels, with subtropical fish and shellfish species ultimately being favored in the Bay. The magnitude of these changes is sensitive to the CO2 emission trajectory, so that actions taken now to reduce CO2 emissions will reduce climate impacts on the Bay. Research needs include improved precipitation and streamflow projections for the Bay watershed and whole-system monitoring, modeling, and process studies that can capture the likely non-linear responses of the Chesapeake Bay system to climate variability, climate change, and their interaction with other anthropogenic stressors.  相似文献   
49.
50.
The contribution of individual grain size fractions (2000–500, 500–250, 250–63, 63–2 and < 2 μm) to bulk soil surface area and reactivity is discussed with reference to mineralogical and oxalate and dithionite extractions data. The 63–2 μm fraction contributed up to 56% and 67% of bulk soil volume and BET surface area, respectively. Consideration of these observations and the mineralogy of this fraction suggest that the 63–2 μm fraction may be the most influential for the release of elements via mineral dissolution in the bulk soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号