首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
大气科学   4篇
地球物理   8篇
地质学   11篇
海洋学   11篇
天文学   20篇
  2023年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有54条查询结果,搜索用时 125 毫秒
11.
Remote sensing reflectance [R rs(λ)] and absorption coefficients of red tides were measured in Isahaya Bay, southwestern Japan, to investigate differences in the optical properties of red tide and non-red tide waters. We defined colored areas of the sea surface, visualized from shipboard, as “red tides”. Peaks of the R rs(λ) spectra of non-red tide waters were at 565 nm, while those of red tides shifted to longer wavelengths (589 nm). The spectral shape of R rs(λ) was close to that of the reciprocal of the total absorption coefficient [1/a(λ)], implying that the R rs(λ) peak is determined by absorption. Absorption coefficients of phytoplankton [a ph(λ)], non-pigment particles and colored dissolved organic matter increased with increasing chlorophyll a concentration (Chl a), and those coefficients were correlated with Chl a for both red tide and non-red tide waters. Using these relationships between absorption coefficients and Chl a, variation in the spectrum of 1/a(λ) as a function of Chl a was calculated. The peak of 1/a(λ) shifted to longer wavelengths with increasing Chl a. Furthermore, the relative contribution of a ph(λ) to the total absorption in red tide water was significantly higher than in non-red tide water in the wavelength range 550–600 nm, including the peak. Our results show that the variation of a ph(λ) with Chl a dominates the behavior of the R rs(λ) peak, and utilization of R rs(λ) peaks at 589 and 565 nm may be useful to discriminate between red tide and non-red tide waters by remote sensing.  相似文献   
12.
Activity in the chromosphere-corona transition region of the quiet Sun is found both at network boundaries and in cell interiors using a time series of the EUV spectroheliograms obtained with the Harvard experiment on Skylab. We identify time-varying sources by subtracting the minimum count at each pixel in the time series from the counts at any time. Larger flux enhancements in emission lines occur only at the network boundary, though the cell interiors also have variable intensities. Time-varying sources in the cell interior appear often in the shape of streaks which seem to originate from sources at the network boundary, or as expanding network boundary sources. It is likely that the sources in the cell interior come from the transition sheaths of chromospheric inhomogenities. A multi-temperature analysis shows that two types of sources occur in the quiet Sun. One is due to heating of cool chromospheric inhomogenities like dark mottles. Sometimes cool matter is heated to coronal temperatures. The typical mass of the coronal material produced is 1011-1012g. The other type seems to be due to draining of transition region material at the network boundary as the result of thermal instabilities. This quiet Sun activity is compatible with the time-varying sources at 6 cm wavelength.  相似文献   
13.
We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
14.
It is known that there is a front-like structure at the mixed layer depth (MLD) distribution in the subtropical gyre, which is called the MLD front, and is associated with the formation region of mode water. In the present article, the generation mechanism of the MLD front is studied using an idealized ocean general circulation model with no seasonal forcing. First, it is shown that the MLD front occurs along a curve where u g ·∇T s = 0 is satisfied (u g is the upper ocean geostrophic velocity vector, T s is the sea surface temperature and ∇ is the horizontal gradient operator). In other words, the front is the boundary between the subduction region (u g ·∇T s > 0) and the region where subduction does not occur (u g ·∇T s < 0). Second, we have investigated subduction of low potential vorticity water at the MLD front, which has been pointed out by past studies. Since u g ·∇T s = 0 at the MLD front, the water particles do not cross the outcrop at the MLD front. The water that is subducted at the MLD front has come from the deep mixed layer region where the sea surface temperature is higher than that at the MLD front. The temperature of the water in the deep mixed layer region decreases as it is advected eastward, attains its minimum at the MLD front where u g ·∇T s = 0, and then subducts under the warmer surface layer. Since the deep mixed layer water subducts beneath a thin stratified surface layer, maintaining its thickness, the mixed layer depth changes abruptly at the subduction location.  相似文献   
15.
The weakening of EUV line emission due to continuum absorptions of neutral hydrogen and neutral helium is investigated to examine its wavelength-dependence. After convolving the intensities predicted from multilevel calculations over an instrumental profile, we found a systematic, linear weakening for lines shortward of 912 Å, which can be attributed to Lyman continuum absorption in the cool chromospheric cloud. The degree of the weakening at the quiet Sun seems to be constant in the temperature range of 4.3 < log T < 5.4. We also find that the lines shortward of 504 Å are somewhat weakened by He i continuum absorption. From the comparison of both weakenings the temperature of the absorber is estimated to be rather low (T e 7 × 103 K).  相似文献   
16.
17.
Large discrepancies are reported for the near-solidus, pressure-temperature location of the spinel to garnet lherzolite univariant curve in the system CaO-MgO-Al2O3-SiO2 (CMAS). Experimental data obtained previously from the piston-cylinder apparatus indicate interlaboratory pressure differences of up to 30% relative. To investigate this disparity—and because this reaction is pivotal for understanding upper mantle petrology—the phase boundary was located by means of an independent method. The reaction was studied via in situ X-ray diffraction techniques in a 6-8 type multianvil press. Pressure is determined by using MgO as an internal standard and is calculated from measured unit cell volume by using a newly developed high-temperature equation of state for MgO. Combinations of real-time and quenched-sample observations are used to bracket the phase transition. The transition between 1350 and 1500°C was reversed, and the reaction was further constrained from 1207 to 1545°C. Within this temperature range, the transition has an average dT/dP slope of ∼40 ± 10°C/kbar, consistent with several previous piston-cylinder studies. Extrapolation of our curve to 1575°C, an established temperature of the P-T invariant point, yields a pressure of 25.1 ± 1.2 kbar. We also obtained a real-time reversal of the quartz-coesite transition at 30.5 ± 2.3 kbar at 1357°C, which is about 2 to 4 kbar lower in pressure than previously determined in the piston-cylinder apparatus.  相似文献   
18.
To explore the causes of the winter shallow mixed layer and high sea surface temperature (SST) along the strong Kuroshio jet from the East China Sea to the upstream Kuroshio extension (25.5°N–150°E) during 1988–1994 when the Japanese sardine stocks collapsed, high-resolution ocean general circulation model (OGCM) hindcast data are analyzed with a bulk mixed layer model which traces particles at the mixed layer base. The shallow mixed layer and high SST along the Kuroshio jet are mainly caused by the acceleration of the Kuroshio current velocity and the reduction of the surface cooling. Because the acceleration reduces the time during which the mixed layer is exposed to wintertime cooling, deepening and cooling of the winter mixed layer are restricted. The weaker surface cooling due to less severe meteorological forcing also causes the shallow mixed layer and the high SST. The impact of the strong heat transport along the Kuroshio extends to the southern recirculation gyre of the Kuroshio/Kuroshio extension regions; previous indications that the Japanese sardine recruitment is correlated with the winter SST and the mixed layer depth (MLD) in the Kuroshio extension recirculation region could be related to the velocity, SST, and MLD near the Kuroshio axis which also could affect the variability of North Pacific subtropical water.  相似文献   
19.
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.  相似文献   
20.
We present a spicule model whose eruption occurs as a result of the sudden pressure enhancement at the bright point located at the root of the spicule. To show this, one dimensional (constant cross sectional) and time dependent hydrodynamic equations are solved numerically in the realistic solar atmosphere extending from the photosphere to the corona. Adiabatic motion is assumed. The pressure enhancement by a bright point at the base of the model atmosphere generates a shock wave. The shock gets stronger as it passes upward through the chromosphere and eventually collides with the chromosphere-corona interface which is a kind of a contact discontinuity. As the result, the interface begins to move upward. We identify the matter following behind this interface as the solar spicule. The model explains many observed features, such as the height and the density of the spicules, although such features have been hitherto considered not to be explained easily by shock theories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号