首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   10篇
测绘学   3篇
大气科学   6篇
地球物理   52篇
地质学   60篇
海洋学   8篇
天文学   33篇
综合类   1篇
自然地理   8篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   9篇
  2019年   6篇
  2018年   10篇
  2017年   7篇
  2016年   6篇
  2015年   3篇
  2014年   9篇
  2013年   8篇
  2012年   10篇
  2011年   9篇
  2010年   9篇
  2009年   4篇
  2008年   8篇
  2007年   13篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1972年   1篇
排序方式: 共有171条查询结果,搜索用时 46 毫秒
91.
Central Asia witnessed progressive aridification during the Miocene, commonly related to mountain uplift, the Paratethys retreat and global climate cooling. However, the formation of Miocene lakes in Central Asia seems to oppose drier conditions, suggesting that the precise timing, extent and forcing of the aridification is still not well constrained. This study presents a facies model for the alluvial–lacustrine part of the Middle to Late Miocene of the Ili Basin, obtained from two successions. The model enables the semi‐quantitative assessment of regional water level and salinity, and characterizes the control of water level on evaporite formation and diagenesis. Both the proximal Kendyrlisai and the distal Aktau successions show an overall increase in water availability from dry mudflat deposits to lacustrine sedimentation with a transitional playa phase. Increasing evaporation rates outpaced the water supply and caused groundwater salinization. Subsequent lake expansion coincided with a basin‐wide desalinization and required a shift to a positive water budget. A climatic control of the hydrological evolution is inferred due to abrupt salinization and a minor tectonic influence. The long‐term water accumulation is probably related to the hydrological closure of the basin in the early Middle Miocene (15·3 Ma). Starting at 14·3 Ma, the step‐wise salinization occurred simultaneously with the global cooling of the Miocene Climate Transition. The Miocene Climate Transition led to extreme aridity in the Ili Basin, highlighted by the early diagenetic formation of displacive anhydrite in the basin centre. The expansion of the freshwater lake (12·7 to 11·5 Ma) was possibly promoted by lower evaporation rates due to decreasing air temperatures in the Ili Basin after the Miocene Climate Transition. The extreme aridity in the Ili Basin is interpreted as a continental counterpart to the Badenian Salinity Crisis in the Central Paratethys. This emphasizes the role of atmospheric forcing on evaporite sedimentation across Eurasia during the Middle Miocene.  相似文献   
92.
Combined determination of Cr and Ti isotopes of planetary materials offers a means with which to investigate their genetic relationship and the evolution of the protoplanetary disk. Here, we report the new sequential chemical separation procedure for combined Cr and Ti isotope ratio measurements. It comprises three steps: (a) Fe removal using AG1‐X8 anion exchange resin, (b) Ti separation using TODGA resin and (c) Cr separation using AG50W‐X8 cation exchange resin (with one additional step of Ti purification using AG1‐X8 anion exchange resin for samples having high Cr/Ti and Ca/Ti ratios). We applied the proposed procedure to terrestrial and meteorite samples with various compositions. Typical recovery rates of 90–100% were achieved with total procedural Cr and Ti blanks of 3–5 and 2–3 ng, respectively. We measured the Cr and Ti isotope compositions of the separated samples using thermal ionisation mass spectrometry and multiple collector‐inductively coupled plasma‐mass spectrometry, respectively. Our Cr and Ti isotope data were found to be consistent with those of previous studies of individual Cr and Ti isotopic compositions of the meteorites. These results demonstrate the capability of our separation method when applied to combined high‐precision Cr and Ti isotope analyses for single digests of planetary materials.  相似文献   
93.
High temperature infrared spectra of hydrous microcrystalline quartz   总被引:1,自引:0,他引:1  
A series of in-situ high temperature infrared (IR) measurements of water in an agate sample and in a milky quartz has been conducted in order to understand the nature of water in silica at high temperatures (50–700?°C) and the dehydration behavior. IR absorption bands of water molecules trapped in the milky quartz showed a systematic decrease in intensities and a shift from 3425?cm?1 at 50?°C toward 3590?cm?1 at 700?°C without any loss of water. This indicates a change in IR absorption coefficients corresponding to different polymeric states of water at different temperatures. The broad 3430?cm?1 band in the agate sample also showed a systematic decrease in IR intensity and a band shift toward higher frequency with increasing temperature (~700?°C). This indicates that the agate sample also contains fluid inclusion-like water. For this agate sample, a dehydration of loosely hydrogen-bonded molecular water occurred at lower temperatures (<200?°C). At higher temperatures (>400?°C), sharp bands around 3660 and 3725?cm?1 (3740?cm?1 at 50?°C) due to surface silanols, appeared. This indicates dehydration of H2O molecules that are hydrogen bonded to surface silanols. SiOH species in the agate are divided into three groups, namely SiOH group located at structural defects, surface silanols hydrogen bonded to each other and free surface silanols. Former two dehydrate below 700?°C and the dehydration rate of the SiOH at structural defects is faster than the other. IR spectra show that SiOH species decrease continuously even after the dehydration of most of H2O molecules. All these results provide realistic bases for the change in physicochemical states of different OH species in silica at high temperatures.  相似文献   
94.
The increase of atmospheric carbon dioxide has positive effects on agricultural productivity (photosynthesis stimulation), but in some regions it has negative effects (drought due to the temperature rise) as well. The central part of the United States in summer is predicted to be one of such regions, where the influence of the CO2 increase should be assessed considering both the effects. Such calculations have been made for spring wheat, soybean and corn in a series of papers, a summary of which is presented here. Since the CO2 emission rate depends on fossil fuel consumption, energy scenarios with different fossil fuel consumption are assumed. Positive effects of CO2 are expressed by a model which simulates actual data. In the absence of an appropriate model negative effects are assumed to be proportional to the temperature rise, which is shown to be unexpectedly good. The difference between C3 (soybean and wheat) and C4 (corn) plants is also considered. Changes of their yields in the next century are calculated. Results show that in this region (probably up to 42–45° N) in summer an unlimited increase of atmospheric CO2 is not desirable for the above three crops even if positive effects of CO2 are taken into account. This work is not intended to give prediction of future crop production, but to show illustrative examples for the above argument. Thus assumptions are made so as to overestimate positive effects and underestimate negative effects, but results show that even in such cases an unlimited increase of CO2 is not necessarily desirable for the specified regions.All inquiries about this paper should be made to K. Okamoto.  相似文献   
95.
A correct understanding of the dynamical effect of solar radiation exerted on fluffy dust particles can be achieved with assistance of a light scattering theory as well as the equation of motion. We reformulate the equation of motion so that the radiation pressure and the Poynting-Robertson effect on fluffy grains are given in both radial and nonradial directions from the center of the Sun. This allows numerical estimates of these radiation forces on fluffy dust aggregates in the framework of the discrete dipole approximation, in which the first term of the scattering coefficients in Mie theory determines the polarizability of homogeneous spheres forming the aggregates.The nonsphericity in shape turns out to play a key role in the dynamical evolution of dust particles, while its consequence depends on the rotation rate and axis of the grains. Unless a fluffy dust particle rapidly revolves on its randomly oriented axis, the nonradial radiation forces may prevent, apart from the orbital eccentricity and semimajor axis, the orbital inclination of the particle from being preserved in orbit around the Sun. However, a change in the inclination is most probably controlled by the Lorentz force as a consequence of the interaction between electric charges on the grains and the solar magnetic field. Although rapidly and randomly rotating grains spiral into the Sun under the Poynting-Robertson effect in spite of their shapes and structures, fluffy grains drift inward on time scales longer at submicrometer sizes and shorter at much larger sizes than spherical grains of the same sizes. Numerical calculations reveal that the dynamical lifetimes of fluffy particles are determined by the material composition of the grains rather than by their morphological structures and sizes. The Poynting-Robertson effect alone is nevertheless insufficient for giving a satisfactory estimate of lifetimes for fluffy dust grains since their large ratios of cross section to mass would reduce the lifetimes by enhancing the collisional probabilities. We also show that the radiation pressure on a dust particle varies with the orbital velocity of the particle but that this effect is negligibly small for dust grains in the Solar System.  相似文献   
96.
Several mafic rock masses, which have experienced eclogite facies metamorphism, are distributed in flat-lying non-eclogitic schists in an intermediate structural level (thermal core) of the Sanbagawa belt. The largest, Iratsu mass, and an associated peridotite, the Higashi-Akaishi mass, extend E–W for about 8 km, and N–S for about 3 km, and are surrounded by pelitic, basic and quartz schists. The Iratsu mass consists of metabasites of gabbroic and basaltic origin, with intercalations of ultramafic rocks, felsic gneiss, quartz schist and metacarbonate. The Iratsu mass can be divided into two layers along a WNW-trending metacarbonate layer. The Higashi-Akaishi mass consists of peridotite with intercalations of garnet clinopyroxenite. It is situated beneath the western half of the Iratsu mass, and their mutual boundary dips gently or steeply to the N or NE. These masses underwent eclogite, and subsequent epidote-amphibolite facies metamorphism as has been reported elsewhere. The Iratsu–Higashi-Akaishi masses and the surrounding rocks underwent ductile deformation under epidote-amphibolite facies (or lower PT) metamorphic conditions. Their foliation generally trends WNW and dips moderately to the NNE, and the mineral lineation mostly plunges to the N and NE. In non-eclogitic schists surrounding the Iratsu–Higashi-Akaishi masses, the foliation generally trends WNW and dips gently or steeply to the N or S and the mineral lineation mostly plunges to the NW, N and NE. Kinematic analysis of deformation structures in outcrops and oriented samples has been performed to determine shear senses. Consistent top-to-the-north, normal fault displacements are observed in peridotite layers of the Higashi-Akaishi mass and eclogite-bearing epidote amphibolite layers of the Iratsu mass. Top-to-the-northeast or top-to-the-northwest displacements also occur in non-eclogitic pelitic–quartz schists on the northern side of the Iratsu mass. In the structural bottom of the Iratsu–Higashi-Akaishi masses and to the south, reverse fault (top-to-the-south) movements are recognized in serpentinized peridotite and non-eclogitic schists. These observations provide the following constraints on the kinematics of the rock masses: (1) northward normal displacement of Iratsu relative to Higashi-Akaishi, (2) northward normal displacement of non-eclogitic schists on the north of the Iratsu mass and (3) southward thrusting of the Iratsu–Higashi-Akaishi masses upon non-eclogitic schists in the south. The exhumation process of the Iratsu–Higashi-Akaishi masses can be explained by their southward extrusion.  相似文献   
97.
Stable carbon and oxygen isotope measurements of biogenic carbonate provide information for reconstructing past oceanic environments. In particular, 18O/16O ratios correlate with the temperature and salinity of seawater and 13C/12C is a proxy for dissolved inorganic carbon in seawater and symbiont photosynthesis. Here, we report 13C/12C and 18O/16O values for skeletons of corals (genus Porites) with various growth rates. In faster-growing corals, 13C/12C and 18O/16O showed out-of-phase annual fluctuations. In slower-growing corals, the isotopes fluctuated in phase. We developed a simple vector notation to show two patterns of 13C/12C annual fluctuation, each with a different offset in relation to 18O/16O annual fluctuation. The phase offset between 13C/12C and 18O/16O annual fluctuations depends on the relative intensities of kinetic isotope effects on calcification and metabolic isotope effects such as photosynthesis. This model might improve our ability to infer past climate and oceanographic conditions from coral skeletons.  相似文献   
98.
99.
We conducted a seismic tomographic analysis to estimate the crustal structure beneath the Shikoku and Chugoku regions in Japan. The Philippine Sea slab (PHS slab) subducts continuously in a SE–NW direction beneath this region, and the crustal structure is complex. Furthermore, the Median Tectonic Line (MTL), one of the longest and most active arc-parallel fault systems in Japan (hereafter, the MTL active fault system), is located in this area, and the right-lateral strike–slip movement of this fault system is related to the oblique subduction of the PHS slab. The MTL active fault system has ruptured repeatedly during the last 10 000 years, and has high seismic potential. Our tomographic analysis clarified the heterogeneous crustal structure along the MTL active fault system. This fault system in Shikoku can be divided into two segments, an east segment and a west segment, on the basis of the velocity structure. This segmentation model is consistent with other such models that have been determined from geological and geomorphological data such as fault geometry, slip rate, and faulting history. This consistency suggests that the surface characteristics of the MTL active fault system are related to structural properties of the crust. In particular, a prominent low-velocity (low-V) zone is present in the lower crust beneath the east segment. Our tomographic images show that the lower crust structure beneath the east segment is obviously different from that of the other segment. Furthermore, this low-V zone may indicate the presence of fluid, possibly related to dehydration of the PHS slab. As the presence of fluid in the lower crust affects the activity of the fault, stress accumulation and the fault failure mechanism may differ between the two segments of the MTL active fault system.  相似文献   
100.
Pelitic schists of the Sanbagawa metamorphic belt contain several types of polymineralic veins that formed during the late stages of exhumation. The vein mineral assemblages are quartz + albite + K-feldspar + chlorite ± calcite (Type I, II) and quartz + albite + calcite (Type III). Type I and II veins contain quartz and albite with stretched-crystal and elongate-blocky textures, respectively. The mineral species within Type I veins vary with compositional bands within the host rocks. Type III veins are characterized by euhedral to subhedral quartz grains with concentric zoning and a homogeneous distribution along the vein length. The vein textures vary depending on the crack aperture during multiple crack-seal events: <0.08 mm for Type I, and 0.5–10 mm for Type III. Type II veins show intermediate features between Type I and III veins in terms of mineral distribution (weak dependence on the host rock composition) and apparent crack aperture (less than 1–15 mm). These observations suggest a transition in the dominant transport mechanism of vein components with increasing crack aperture, from diffusion from host rocks to fluid advection along cracks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号