首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   7篇
  国内免费   11篇
大气科学   10篇
地球物理   53篇
地质学   37篇
海洋学   123篇
天文学   68篇
综合类   2篇
自然地理   9篇
  2018年   7篇
  2017年   5篇
  2016年   11篇
  2014年   7篇
  2013年   8篇
  2012年   3篇
  2011年   10篇
  2010年   11篇
  2009年   10篇
  2008年   10篇
  2007年   11篇
  2006年   6篇
  2005年   19篇
  2004年   14篇
  2003年   12篇
  2002年   6篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   8篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   7篇
  1973年   3篇
  1972年   3篇
  1971年   4篇
  1970年   2篇
  1968年   3篇
  1963年   2篇
  1958年   2篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
271.
Vertical profiles of tritium in seawater were determined for samples collected during the period from 1988 to 1990 at fourteen stations in the northwestern North Pacific (the Oyashio region) including the Okhotsk Sea and the Bering Sea. The profiles usually had a maximum in the surface layer and decreased gradually with depth down to 1,000 m. The water column inventory of tritium averaged 63% of the total atmospheric input in this region.The horizontal distribution of tritium showed a maximum in the region facing the Okhotsk Sea near 45°N for every isopycnal surface of 0 ranging from 26.60 to 27.40. The ages of the intermediate water were calculated for the respective isopycnal surfaces in the maximum region. This calculation assumed that the intermediate water was formed by the isopycnal mixing of two water masses—the Okhotsk Sea and the Bering Sea Component Waters, which had been produced in wintertime by the diapycnal mixing of the surface and the deep waters in the respective marginal seas. The results show that the intermediate water in this region was formed in the late 1980's for the water which has 0 of 26.60 to 26.80 and about 1970 for the water which has 0 of 27.00 to 27.40. Although we have estimated the mean ages of the intermediate water, the horizontal profile of dissolved oxygen suggests that the Okhotsk Sea Component Water is younger than the mean age.  相似文献   
272.
Švestka  Zdeněk  Fárník  František  Hick  Paul  Hudson  Hugh S.  Uchida  Yutaka 《Solar physics》1997,176(2):355-371
We demonstrate several events where an eruptive flare close to the limb gave rise to a transient coronal streamer visible in X-rays in Yohkoh SXT images, and analyze one of these events, on 28–29 October 1992, in detail. A coronal helmet streamer began to appear 2 hours after the flare, high above rising post-flare loops; the streamer became progressively narrower, reaching its minimum width 7–12 hours after the flare, and widened again thereafter, until it eventually disappeared. Several other events behaved in a similar way. We suggest that the minimum width indicates the time when the streamer became fully developed. All the time the temperature in the helmet streamer structure was decreasing, which can explain the subsequent fictitious widening of the X-ray streamer. It is suggested that we may see here two systems of reconnection on widely different altitudes, one giving rise to the post-flare loops while the other creates (or re-forms) the coronal helmet streamer. A similar interpretation was suggested in 1990 by Kopp and Polettofor post-flare giant arches observed on board the SMM; indeed, there are some similarities between these post-flare helmet streamers and giant arches and, with the low spatial resolution of SMM instruments, it is possible that some helmet streamers could have been considered to be a kind of a giant arch.  相似文献   
273.
An experiment was carried out to develop a technique to measure shear wave velocity simultaneously with the standard penetration test popular in soil engineering. In the standard penetration test an impact at the bottom of a borehole is produced by weight dropping and may be expected to generate seismic waves. A three-component geophone was set on the ground surface near the borehole and the waves generated were recorded with a magnetic recorder at successive depths of the penetration test. The predominance of the SV wave obtained with this simple method was assured by measurement of the particle orbit. Signal amplitudes decrease with depth and become less than the noise level at a certain depth. Therefore records from deeper sources must be processed to disclose the shear waves. Since waveforms of SV events generated by blows of the penetration test at a given depth are very similar, the signal to noise ratio would be expected to be improved by a stack of wave trains. A paste-up of the radial component after stacking was compared with that before stacking and a refinement was clearly recognized. A vertical distribution of shear wave velocity was obtained by reading the onset time at each depth. Shear wave velocities thus obtained were compared with N values from the standard penetration test and specific resistivities from electrical logging in the same borehole. The data were mutually consistent. This experiment showed that a convenient, precise shear wave velocity measurement can be conducted during the routine work of a standard penetration test.  相似文献   
274.
From the experimental data on stepwise thermal release of neutron induced 39Ar (39K (n, p) 39Ar) from rocks and minerals, Arrhenius plots were constructed, which gave activation energies for the thermal release process. The activation energies for DSDP Leg 58 and Leg 60 submarine volcanic rocks range from 12 to 20 kcal/mol, whereas those for granodiorites and the K-feldspar separates have activation energies ranging from 37 to 48 kcal/mol. The smaller activation energies for the submarine volcanic rocks reflect the grain boundary diffusion process, while the thermal diffusion of 39Ar from granodiorites and K-feldspar is essentially controlled by a volume diffusion. The grain boundary diffusion for the submarine volcanic rocks suggests that K resides essentially in the grain boundaries.  相似文献   
275.
276.
Physical state of the very early Earth   总被引:1,自引:0,他引:1  
Yutaka Abe 《Lithos》1993,30(3-4):223-235
The earliest surface environment of the Earth is reconstructed in accordance with the planetary formation theory. Formation of an atmosphere is an inevitable consequence of Earth's formation. The atmosphere near the close of accretion is composed of 200 300 bars of H2 and H2O, and several tens of bars of CO and CO2. Either by the blanketing effect of the proto-atmosphere or heating by large planetesimal impacts a magma ocean is formed during accretion. We can distinguish three stages for the thermal evolution of the magma ocean and proto-crust. Stage 0 is characterized by a super-liquidus (or completely molten) regime near the surface. At this stage the surface of the Earth is covered by a super-liquidus magma ocean. No chemical differentiation is expected during this stage. Once the energy flux released by planet formation decreases to the 200 W/m2 level the super-liquidus magma ocean then disappears within a time interval of 1 m.y. This is the transition from stage 0 to 1. Stage 1 is characterized by a partially molten magma ocean. In the magma ocean consisting of 20 30% partial melt, heat transport is controlled by melt-solid separation (a type of compositional convection) rather than thermal convection. Chemical differentiation of the mantle mainly occurs in this stage. Once the energy flux drops to the 160 W/m2 level, more than 90% of water vapor in the proto-atmosphere condense to form the proto-oceans. Several tens of bars of CO and CO2 remain in the atmosphere just after formation of the oceans. Water oceans are occasionally evaporated by large impacts. After each such event, recondensation of the ocean takes several hundred years. Although the surface is covered by a chilled proto-crust, it is short-lived because of extensive volcanic resurfacing activity as well as meteorite impacts resurfacing. This stage ends when the energy flux drops to 0.1 1 W/m2 level. The duration time of stage 1 is estimated to be several hundred million years (the best estimate is about 400 m.y.). Stage 2 is characterized by solid state convection. This stage continues to the present day. One of the most important change on the proto-Earth is the transition from stage 1 to 2, which occurs several hundred million years after the Earth formation. Long-lived crust is formed only after this transition.  相似文献   
277.
A three-dimensional formulation based on Green's functions of cylindrical loads in layered semi-infinite media is employed to investigate the dynamic behaviour of piles in homogeneous and non-homogeneous half spaces. The pile-soil-pile interaction taking place in pile groups is incorporated in the model. The results presented in this paper include the dynamic stiffnesses and dampings of single piles as well as those of representative 2 × 2 and 4 × 4 square pile groups in the soil media considered in this study. In addition, the distribution of forces applied on the pile cap among the individual piles in a group is investigated.  相似文献   
278.
The general features of elastic-plastic response spectra for several accelerograms that are widely used for the design buildings in Japan were studied in terms of the effects of the different hysteretic models used in the analyses. Lare fluctuations existed in the spectra for both input ground motion and the different models. The models were classified according to their strain energy-absorbing capacities in three groups, within each of which the relevant nature of elastic-plastic responses of the structures were similar. Finally, empirical formulae with which to estimate two measures structural damage, the ductility factors and cumulative plastic displacement normalized by the yielding displacement, wer developed for each group of hysteretic models.  相似文献   
279.
Matsuno and Nagata (1987) showed numerically that the spreading characteristics of the discharged heated water from power plants of existing scale is significantly influenced by the earth's rotation effect. Although the effect of the enhancement of the Coriolis parameter on the spreading characteristics of the formed warm water mass was discussed in order to demonstrate the rotation effect, other parameters such as the density difference between the discharged heated water and ambient water and the vertical eddy viscosity and diffusivity were fixed. In this paper, the dependence of the spreading characteristics on these parameters is examined. Then, it is shown that the overall shape of the formed warm water mass and density and velocity structure strongly depend on these parameters. Also, it is indicated that the behavior of the warm water mass under the rotation effects is too complicated to be described with a few parameters. For example, the internal radius of deformation seems to be one of the determinative parameters, and the increase of the density difference between discharged water and ambient water has a similar effect on the shape of the formed warm water mass as a decrease of the Coriolis parameter. However, a change of the two values has different effects on the detailed density structure and current structure of the warm water mass. The Prandtl number seems to determine some aspects of the veloczty field such as velocity magnitude and width of the southward flowing current zone. However, other features such as the thickness of the warm water mass are not determined by the Prandtl number.  相似文献   
280.
The most plausible scenarios for seasonal to interannual variabilities and their possible causes are investigated for the Tsushima Current system passing through the Japan Sea. The study is based on the north and south two-box model across the polar front in an idealized upper ocean of the Japan Sea. The boxes are connected by lateral diffusive heat transport and cooled by atmospheric forcing at the annual mean state. The south box, i.e. the Tsushima Current region, only interacts with the outside warmer box in the East China Sea and has an eastward thermal-driven current originating in the outside box. The magnitude of this current depends on the strength of the thermal gradient between the north and south boxes; the inflow of warm waters can therefore be maintained by net heat loss through the sea-surface. I call such a thermal-driven inflow process a "Cooling-Induced Current" system in the present study. Under periodical heat forcing, the perturbation response of the model to water temperature fields and inflow transport were examined. It is shown that the lateral diffusion time across the polar front (over a period of 10 years) is crucial to the interannual modeled response. An analysis of the seasonal heat budget suggests that the heat transported into the Japan Sea from the East China Sea in summer is stored mainly within the Tsushima Current region and contributes to heat loss by the sea-surface cooling in winter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号