首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   7篇
  国内免费   3篇
测绘学   3篇
大气科学   14篇
地球物理   50篇
地质学   73篇
海洋学   27篇
天文学   42篇
综合类   1篇
自然地理   4篇
  2023年   1篇
  2021年   5篇
  2020年   6篇
  2019年   3篇
  2017年   5篇
  2016年   11篇
  2015年   5篇
  2014年   7篇
  2013年   10篇
  2012年   3篇
  2011年   11篇
  2010年   11篇
  2009年   4篇
  2008年   13篇
  2007年   9篇
  2006年   6篇
  2005年   7篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   6篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
81.
The Hyuganada region, a forearc region of Southwest Japan, is characterized by several interesting geological and geophysical features, i.e., significant aseismic crustal uplift of 120 m during the past 120 thousand years at the Miyazaki Plain, negative free-air gravity anomalies with the maximum magnitude of −130 mgal, and relatively less cohesive interplate coupling compared with that for off the Shikoku and Kii Peninsula. In order to examine the causes of these observations, we determined a detailed three-dimensional seismic velocity structure based on the seismic data observed by ocean bottom seismometers (OBS) and land stations. P- and S-wave tomographic velocity structures clearly indicate the subducting slab and also the zones of high Poisson's ratio at 25–35 km depth along the coastline of the northeastern part of the Hyuganada. The region with high Poisson's ratio may correspond to the serpentinized mantle wedge as suggested for other mantle wedges, and appears to be coincident with the zone for observed aseismic slips such as the slow-slip and after-slip events. Also, the detection may be related to a relatively weak interplate coupling in the Hyuganada region. The tomographic structures also indicate low velocity zones with a horizontal scale comparable to the Kyushu-Palau Ridge in and around the subducting slab. If we assume that the low velocity zones correspond to the subducted Kyushu-Palau Ridge, then the predicted gravity anomaly due to the density contrast between the low velocity zones and the surrounding region can explain about 60% of the gravity anomaly in the Hyuganada region. The buoyancy is probably an important factor for the crustal uplift observed in the Miyazaki Plain, the steep bending of the subducting slab and the normal fault-type earthquakes around the Hyuganada region.  相似文献   
82.
Laboratory experiments on natural, hydrous basalts at 1–4 GPa constrain the composition of “unadulterated” partial melts of eclogitized oceanic crust within downgoing lithospheric slabs in subduction zones. We complement the “slab melting” experiments with another set of experiments in which these same “adakite” melts are allowed to infiltrate and react with an overlying layer of peridotite, simulating melt:rock reaction at the slab–mantle wedge interface. In subduction zones, the effects of reaction between slab-derived, adakite melts and peridotitic mantle conceivably range from hybridization of the melt, to modal or cryptic metasomatism of the sub-arc mantle, depending upon the “effective” melt:rock ratio. In experiments at 3.8 GPa, assimilation of either fertile or depleted peridotite by slab melts at a melt:rock ratio 2:1 produces Mg-rich, high-silica liquids in reactions which form pyrope-rich garnet and low-Mg# orthopyroxene, and fully consume olivine. Analysis of both the pristine and hybridized slab melts for a range of trace elements indicates that, although abundances of most trace elements in the melt increase during assimilation (because melt is consumed), trace element ratios remain relatively constant. In their compositional range, the experimental liquids closely resemble adakite lavas in island-arc and continental margin settings, and adakite veins and melt inclusions in metasomatized peridotite xenoliths from the sub-arc mantle. At slightly lower melt:rock ratios (1:1), slab melts are fully consumed, along with peridotitic olivine, in modal metasomatic reactions that form sodic amphibole and high-Mg# orthopyroxene.  相似文献   
83.
A sustained dynamic inflow perturbation and bar–floodplain conversion are considered crucial to dynamic meandering. Past experiments, one-dimensional modelling and linear theory have demonstrated that the initiation and persistence of dynamic meandering require a periodic transverse motion of the inflow. However, it remains unknown whether the period of the inflow perturbation affects self-formed meander dynamics. Here, we numerically study the effect of the inflow perturbation period on the development and meander dynamics of a chute-cutoff-dominated river, which requires two-dimensional modelling with vegetation forming floodplain on bars. We extended the morphodynamic model Nays2D with growth and mortality rules of vegetation to allow for meandering. We tested the effect of a transversely migrating inflow boundary by varying the perturbation period between runs over an order of magnitude around typical modelled meander periods. Following the cutoff cascade after initial meander formation from a straight channel, all runs with sufficient vegetation show series of growing meanders terminated by chute cutoffs. This generates an intricate channel belt topography with point bar complexes truncated by chutes, oxbow lakes, and scroll-bar-related vegetation age patterns. The sinuosity, braiding index and meander period, which emerge from the inherent biomorphological feedback loops, are unrelated to the inflow perturbation period, although the spin-up to dynamic equilibrium takes a longer time and distance for weak and absent inflow perturbations. This explains why, in previous experimental studies, dynamic meandering was only accomplished with a sustained upstream perturbation in flumes that were short relative to the meander wavelength. Our modelling of self-formed meander patterns is evidence that scroll-bar-dominated and chute-cutoff-dominated meanders develop from downstream convecting instabilities. This insight extends to many more fluvial, estuarine and coastal systems in morphological models and experiments, which require sustained dynamic perturbations to form complex patterns and develop natural dynamics. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
84.
85.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   
86.
From the photographs taken at the total solar eclipse of 11 June 1983, we derived the electron density for the north polar rays and for the thread-like fine structures above the active region, which are 108 at 1.4 solar radii and 3×109 at 1.15 solar radii, respectively. The brightness distributions of the corona at the polar region and above the active region, and the flattening index were also derived.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   
87.
Ion probe investigations on mineral phases forming the Al-Di pyroxenites from the Zabargad peridotite body indicate that porphyroclastic pyroxenes in composite mafic layers record an unusual HREE, Zr, Sc enrichment not registered by pyroxenes in spinel websterites. Orthopyroxene in the opx+sp clusters forming the inner, cpx-free zone of layered pyroxenites shows strongly fractionated REE patterns (HREEN/LREEN>1000; Yb>100xch) and very high Zr, Sc and Y abundances (up to 30,672 and 60ppm, respectively). In the outer, cpx-rich zone porphyroclastic clinopyroxene is strongly HREE enriched (HREEN/LREEN29; Yb 269xch) and displays very high Sc and Zr abundances (up to 819 and 164 ppm, respectively). It is suggested that the unusual trace element abundances are inherited from a precursor garnet. Composite pyroxenite layers are interpreted as former garnet clinopyroxenites characterized by gnt/cpx modal zoning. The sp+opx(cpx-free) assemblage in the inner part is a product of the break-down reaction of garnet upon decompression, with Ca of the original garnet completely entering the enstatite solid solution. The temperature at which the breakdown reaction occurred is estimated to be higher than 1000°C (P in the range 20–30 kbar). In the outer part, decompression caused the garnet to form a sp+opx assemblage; however, the grossularite component participated in the formation of new clinopyroxene which reacted with the clinopyroxene present in the original mode before the decompression reaction, thus forming a cpx2+sp+opx assemblage. As a result of garnet breakdown, pyroxenes have peculiar HFSE anomalies. Progressive upwelling during the Red Sea rifting produced incomplete reaction under pl-facies conditions. The geochemical signatures of precursor garnet in pyroxenes were partially crased during the recrystallization from granular spincl-bearing to granoblastic plagioclase-bearing assemblages, being preserved only in a few porphyroclast relies. The finding of pyroxenes with trace element characteristics of precursor garnet has important geodynamic and geochemical implications. Al-Di pyroxenite layers had a long history within the mantle, before the continental lithosphere rifting and thinning took place in the region. It is suggested that Al-Di pyroxenites were formed by deep-seated tholeiitic magmatism unrelated to the Red Sea evolution, thus representing the earliest event in the Zabargad upper mantle. Garnet breakdown significantly preceded the metasomatism induced by hydrous fluids (crystallization of Ti-rich pargasite) and the later intrusion of hydrous (Cr-Di) pyroxenite dykes. During the stages of mantle evolution, the HFSE anomalies in pyroxenes varied significantly. We note that the study of HFSE anomalies in mineral phases reveals complex geochemical histories which are not recorded by the whole-rock system.  相似文献   
88.
Up to 3 km of dunitic rocks occur below crustal gabbro in the Blow Me Down massif (Bay of Islands Ophiolite, Newfoundland). Analyses of dunite- and gabbro-hosted clinopyroxene grains (cpx) for rare earth elements (REE), Zr, and Ti reveal three types of chondrite-normalized patterns: N-group patterns are similar to cpx grains as they would form by fractionation from a range of mid ocean ridge basalts (MORB). They are typical for a few higher level dunitic samples as well as mafic cumulates. F-group patterns show light REE depletion, very strong middle REE fractionation and a positive Zr anomaly and occur in dunites only. R-group patterns are severely depleted in both light and heavy REEs relative to MORB-like cpx and two samples of the group display a positive Ti anomaly. They are also restricted to dunitic rocks. The patterns are explained in a two stage model in which an established dunite sequence, dominated by MORB-type cumulate signatures (N-group), was infiltrated by extremely refractory melts. During infiltration of the refractory melt chromatographic fractionation occurred, transforming N-group dunites into F-group and R-group dunites. The F-group patterns are composite patterns: heavy REE, Ti ± Zr reflect the original MORB-like cumulate dunite host, light REEs indicate equilibrium with the infiltrating, refractory melts. Steep slopes in the middle REEs reflect the position of the chromatographic front. For more intense percolation of refractory melts, R-group patterns with a positive Ti anomaly will form by the same process. The rest of the R-group patterns displaying no positive Ti anomaly may represent either the most intensely reacted host rocks or these dunites derive directly as cumulates from refractory melts. Only small volumes of refractory melt (a 5 m column) are required to imprint the observed trace element pattern on the thick original dunite sequence. One of several possible origins for the refractory melts is transformation of original MORB-type melts by way of chromatographic fractionation within the highly depleted, residual uppermost mantle. In the framework of an oceanic spreading centre, the migrating, refractory liquids are considered a late event following the main constructive stage dominated by aggregated melts. The study demonstrates that highly refractory melts can exist under oceanic spreading centres dominated by a MORB-like cumulate and volcanic sequence. Received: 2 September 1996 / Accepted: 20 November 1997  相似文献   
89.
Both evergreen and deciduous forests (Efs and Dfs) are widely distributed under similar climatic conditions in tropical monsoon regions. To clarify the hydraulic properties of the soil matrix in different forest types and their effects on soil water storage capacity, the soil pore characteristics (SPC) were investigated in Ef and Df stands in three provinces in Cambodia. Soils in the Ef group were characterized in common by large amounts of coarse pores with moderate pore size distribution and the absence of an extremely low Ks at shallow depths, compared to Df group soils. The mean available water capacity of the soil matrix (AWCsm) for all horizons of the Ef and Df group soils was 0·107 and 0·146 m3 m?3, respectively. The mean coarse pore volume of the soil matrix (CPVsm) in the Ef and Df groups was 0·231 and 0·115 m3 m?3, respectively. A water flow simulation using a lognormal distribution model for rain events in the early dry season indicated that variation in SPC resulted in a larger increase in available soil water in Ef soils than in Df soils. Further study on deeper soil layers in Ef and each soil type in Df is necessary for the deeper understanding of the environmental conditions and the hydrological modelling of each forest ecosystem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
90.
Carbonaceous materials in the sample catcher of the Hayabusa spacecraft were assigned as category 3 particles. We investigated the category 3 particles with a suite of in situ microanalytical methods. Possible contaminants collected from the cleanrooms of the spacecraft assembly and extraterrestrial sample curation center (ESCuC) were also analyzed in the same manner as category 3 particles for comparison. Our data were integrated with those of the preliminary examination team for category 3 particles. Possible origins for the category 3 particles include contamination before and after the operation of the Hayabusa spacecraft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号