首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
  国内免费   3篇
测绘学   9篇
大气科学   17篇
地球物理   19篇
地质学   32篇
海洋学   4篇
天文学   37篇
综合类   2篇
自然地理   6篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   1篇
  2017年   5篇
  2016年   6篇
  2015年   10篇
  2014年   6篇
  2013年   9篇
  2012年   7篇
  2011年   11篇
  2010年   8篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1983年   1篇
  1979年   1篇
  1950年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
41.
42.
ABSTRACT A mudflow-like deposit resting on the bottom of the East Gorgonum Crater (Mars; 37.4°S, 168.0°W) may provide new insight regarding the debate on the existence of water over the Martian surface. Because water in a mudflow is confined to a porous medium, we analyse this case from the perspective of non-equilibrium systems. Fluids confined to porous media behave in a special way, the system being ruled by kinetic restrictions, which alter the expected thermodynamic equilibrium. These non-equilibrium conditions allow the existence of pure liquid water to temperatures as low as − 40 °C, and even less if the system includes brines. Thus, application of the triple point diagram of water on the Martian surface may constitute a simplistic approach if we are dealing with confined, and yet moving, water in the form of a mudflow. We further suggest that the V-shaped channels excavated alongside the mudflow may have been caused by water rejected by syneresis from the moving sediment. We finally indicate that the series of deeply entrenched channels and debris aprons that occur only in the northern half of the crater might be related to the regional slope, which decreases in altitude to the south.  相似文献   
43.
The Quebradagrande Complex of Western Colombia consists of volcanic and Albian–Aptian sedimentary rocks of oceanic affinity and outcrops in a highly deformed zone where spatial relationships are difficult to unravel. Berriasian–Aptian sediments that display continental to shallow marine sedimentary facies and mafic and ultramafic plutonic rocks are associated with the Quebradagrande Complex. Geochemically, the basalts and andesites of the Quebradagrande Complex mostly display calc-alkaline affinities, are enriched in large-ion lithophile elements relative to high field strength elements, and thus are typical of volcanic rocks generated in supra-subduction zone mantle wedges. The Quebradagrande Complex parallels the western margin of the Colombian Andes’ Central Cordillera, forming a narrow, discontinuous strip fault-bounded on both sides by metamorphic rocks. The age of the metamorphic rocks east of the Quebradagrande Complex is well established as Neoproterozoic. However, the age of the metamorphics to the west – the Arquía Complex – is poorly constrained; they may have formed during either the Neoproterozoic or Lower Cretaceous. A Neoproterozoic age for the Arquía Complex is favored by both its close proximity to sedimentary rocks mapped as Paleozoic and its intrusion by Triassic plutons. Thus, the Quebradagrande Complex could represent an intracratonic marginal basin produced by spreading-subsidence, where the progressive thinning of the lithosphere generated gradually deeper sedimentary environments, eventually resulting in the generation of oceanic crust. This phenomenon was common in the Peruvian and Chilean Andes during the Uppermost Jurassic and Lower Cretaceous. The marginal basin was trapped during the collision of the Caribbean–Colombian Cretaceous oceanic plateau, which accreted west of the Arquía Complex in the Early Eocene. Differences in the geochemical characteristics of basalts of the oceanic plateau and those of the Quebradagrande Complex indicate these units were generated in very different tectonic settings.  相似文献   
44.
Cenozoic magmatic activity in northern Chile led to the formation of two contrasting porphyry copper belts: (1) a Paleocene-Early Eocene belt comprising small porphyry copper deposits (e.g., Lomas Bayas) of normal calc-alkaline affinity; and (2) a Late Eocene-Early Oligocene belt hosting huge porphyry copper deposits (e.g., Chuquicamata) of adakitic affinity. Although the first belt comprises both volcanic and plutonic rocks (andesitic-basaltic and rhyolitic lavas and tuffs, and associated sub-volcanic porphyries and felsic stocks), the latter only includes intrusions (mostly granodioritic types, including porphyry copper deposits). We suggest that the Late Eocene-Early Oligocene belt formed when fast and oblique convergence between the South America and Farallon plates led to flat subduction and direct melting of the subducting plate, hence giving rise to plutonic rocks of adakitic affinity. The absence of volcanism, under prevailing compressional conditions, prevented the escape of SO2 from the adakitic, sulfur-rich, highly oxidized magmas ("closed porphyry system"), which allowed formation of huge mineral deposits. On the contrary, coeval volcanic activity during formation of the Paleocene-Early Eocene calc-alkaline porphyries allowed development of "open systems", hence to outgassing, and therefore, to small mineral deposits.  相似文献   
45.
We present the outcomes of simulations of the formation of the Vista Alegre impact structure, Paraná Basin, Brazil. The target comprised a thick sequence of volcanic rocks of predominantly basaltic composition of the Serra Geral Formation that had been deposited on top of sedimentary rocks (sandstones) of the Pirambóia/Botucatu formations. The cratering process was modeled using the iSALE shock physics code. Our best‐fit model suggests that (1) the crater was originally ~10 km in size; (2) it was formed in ~115 s by a stony projectile of 1000 m in diameter, for an assumed impact velocity of 12 km s?1; (3) target rocks underwent a peak pressure of ~20 GPa, in agreement with previous petrographic investigations of shock deformation. Furthermore, the model points out that the sedimentary strata below the layer of volcanic rocks were raised by ~650 meters at the central part of the crater, which resulted in the current partial exposure of the sandstones at the surface. The outcomes of our modeling suggest that parameters like cohesion and strength of the target rocks, after shock compression, determined the final morphology of the crater, especially the absence of a topographically prominent central peak. Finally, the results of the numerical modeling are roughly in agreement with gravity data over the structure, in particular with respect to the presence of the uplifted sedimentary strata, which are responsible for a low gravity signature at the center of the structure.  相似文献   
46.
The ability of state-of-the-art climate models to capture the mean spatial and temporal characteristics of daily intense rainfall events over Africa is evaluated by analyzing regional climate model (RCM) simulations at 90- and 30-km along with output from four atmospheric general circulation models (AGCMs) and coupled atmosphere–ocean general circulation models (AOGCMs) of the Climate Model Intercomparison Project 5. Daily intense rainfall events are extracted at grid point scale using a 95th percentile threshold approach applied to all rainy days (i.e., daily rainfall ≥1 mm day?1) over the 1998–2008 period for which two satellite-derived precipitation products are available. Both RCM simulations provide similar results. They accurately capture the spatial and temporal characteristics of intense events, while they tend to overestimate their number and underestimate their intensity. The skill of AGCMs and AOGCMs is generally similar over the African continent and similar to previous global climate model generations. The majority of the AGCMs and AOGCMs greatly overestimate the frequency of intense events, particularly in the tropics, generally fail at simulating the observed intensity, and systematically overestimate their spatial coverage. The RCM performs at least as well as the most accurate global climate model, demonstrating a clear added value to general circulation model simulations and the usefulness of regional modeling for investigating the physics leading to intense events and their change under global warming.  相似文献   
47.
Uncertainties in simulating the seasonal mean atmospheric water cycle in Equatorial East Africa are quantified using 58 one-year-long experiments performed with the Weather Research and Forecasting model (WRF). Tested parameters include physical parameterizations of atmospheric convection, cloud microphysics, planetary boundary layer, land-surface model and radiation schemes, as well as land-use categories (USGS vs. MODIS), lateral forcings (ERA-Interim and ERA40 reanalyses), and domain geometry (size and vertical resolution). Results show that (1) uncertainties, defined as the differences between the experiments, are larger than the biases; (2) the parameters exerting the largest influence on simulated rainfall are, in order of decreasing importance, the shortwave radiation scheme, the land-surface model, the domain size, followed by convective schemes and land-use categories; (3) cloud microphysics, lateral forcing reanalysis, the number of vertical levels and planetary boundary layer schemes appear to be of lesser importance at the seasonal scale. Though persisting biases (consisting of conditions that are too wet over the Indian Ocean and the Congo Basin and too dry over eastern Kenya) prevail in most experiments, several configurations simulate the regional climate with reasonable accuracy.  相似文献   
48.
The Bacaba iron oxide–copper–gold deposit, situated within a WNW–ESE-striking shear zone in the Carajás Domain, Carajás Mineral Province, is hosted by the Serra Dourada Granite, the Bacaba Tonalite, and crosscutting gabbro intrusions, which were intensely affected by sodic (albite–scapolite), potassic, chloritic, and hydrolytic hydrothermal alteration. This deposit is located 7 km northeast of the world-class Sossego iron oxide–copper–gold deposit and might represent a distal and deeper portion of the same or related hydrothermal system. The U–Pb laser ablation inductively coupled plasma–mass spectrometry data for zircon from a sodically altered sample of the Serra Dourada Granite yielded a 2,860±22 Ma (MSWD=11.5) age. Three samples from the Bacaba Tonalite, including one with potassic alteration and two with Cu–Au mineralization, rendered the 3,001.2±3.6 Ma (MSWD=1.8), 2,990.9±5.8 Ma (MSWD=1.9), and 3,004.6±9 Ma (MSWD=2.2) ages, respectively. The ca. 2.86 and ca. 3.0 Ga ages are interpreted as the timing of the igneous crystallization of the Serra Dourada Granite and the Bacaba Tonalite, respectively, and represent the oldest magmatic events recognized in the Carajás Domain. The Serra Dourada Granite and the Bacaba Tonalite are interpreted to greatly predate the genesis of the Bacaba deposit. A genetic link is improbable in the light of the similarities with the Sossego deposit, which is also hosted by younger ca. 2.76 Ga metavolcano-sedimentary units of the Itacaiúnas Supergroup. In this context, the iron oxide–copper–gold deposits in the southern sector of the Carajás Domain could be mainly controlled by important crustal discontinuities, such as a regional shear zone, rather than be associated with a particular rock type. These results expand the potential for occurrences of iron oxide–copper–gold deposits within the Mesoarchean basement rocks underlying the Carajás Basin, particularly those crosscut by Neoarchean shear zones.  相似文献   
49.
Climate change impacts on global agriculture   总被引:1,自引:0,他引:1  
Based on predicted changes in the magnitude and distribution of global precipitation, temperature and river flow under the IPCC SRES A1B and A2 scenarios, this study assesses the potential impacts of climate change and CO2 fertilization on global agriculture. The analysis uses the new version of the GTAP-W model, which distinguishes between rainfed and irrigated agriculture and implements water as an explicit factor of production for irrigated agriculture. Future climate change is likely to modify regional water endowments and soil moisture. As a consequence, the distribution of harvested land will change, modifying production and international trade patterns. The results suggest that a partial analysis of the main factors through which climate change will affect agricultural productivity provide a false appreciation of the nature of changes likely to occur. Our results show that global food production, welfare and GDP fall in the two time periods and SRES scenarios. Higher food prices are expected. No matter which SRES scenario is preferred, we find that the expected losses in welfare are significant. These losses are slightly larger under the SRES A2 scenario for the 2020s and under the SRES A1B scenario for the 2050s. The results show that national welfare is influenced both by regional climate change and climate-induced changes in competitiveness.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号