首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1043篇
  免费   86篇
  国内免费   18篇
测绘学   20篇
大气科学   91篇
地球物理   311篇
地质学   382篇
海洋学   69篇
天文学   194篇
综合类   9篇
自然地理   71篇
  2023年   4篇
  2022年   11篇
  2021年   16篇
  2020年   35篇
  2019年   35篇
  2018年   54篇
  2017年   75篇
  2016年   59篇
  2015年   54篇
  2014年   58篇
  2013年   67篇
  2012年   54篇
  2011年   71篇
  2010年   57篇
  2009年   53篇
  2008年   65篇
  2007年   48篇
  2006年   50篇
  2005年   42篇
  2004年   39篇
  2003年   44篇
  2002年   27篇
  2001年   15篇
  2000年   13篇
  1999年   15篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   9篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有1147条查询结果,搜索用时 31 毫秒
951.
Palaeo- and rock-magnetic investigations of the St Bertrand’s Spring (Le Ravin de Font de St Bertrand) locality in France were carried out in order to contribute to, and improve, the stratigraphy of the Jurassic-Cretaceous boundary interval. Magnetic susceptibility shows slightly diamagnetic behaviour in the lowermost part of the profile and an increase (paramagnetic) towards its middle and upper parts. Rock-magnetic measurements throughout the section show magnetite as the main magnetic fraction, together with traces of hematite. Additionally, thermal demagnetization indicates the presence of goethite. Our magnetostratigraphy indicates three normal/reversed polarity sequences; possibly encompassing the magnetozones M19r to the M17n. This suggests that the St Bertrand section straddles the Tithonian/Berriasian boundary and reaches the middle Berriasian sensu lato.  相似文献   
952.
Granular materials submitted to uniaxial compression undergo pore space reduction due to mechanisms such as particle rearrangement and grain crushing. These changes in the internal structure of the material release energy in the form of elastic waves that can be detected by sensors sensitive to acoustic emission. In this study, Acoustic emission monitoring with a wavelet-based signal processing technique is used to identify the various mechanisms occurring during high-pressure sand compaction. Particle movement, grain failure, friction between grains and the surface of the compression cell and intergranular friction are studied. Acoustic emission data recorded during these simplified tests are used to characterize each phenomenon. Wavelet transform analyses allow the identification of useful features, making possible frequency discrimination among sliding, rolling, friction and grain fragmentation processes. For instance, we observe that at low stress, grain flow is characterized by the lowest centroid and peak frequencies, while at greater stresses, intergranular friction and grain fragmentation have the higher values. In the tests performed, the stress–strain evolution and final condition of the tested sand are broadly consistent, irrespective of the condition employed: continuous, stepwise or even variable loading rate or temperature. However, Acoustic emission data manifest much more complex behaviour (including thermal, load-rate dependency and delayed fragmentation phenomena) than that suggested by stress–strain relationships. At low stress levels, grain flow (sliding/rolling) is a relevant strain-accommodation mechanism, but so is crushing due to the effect of concentrated forces at the grain contact level. At high stresses, when crushing is generalized, intergranular friction is also a relevant phenomenon due to the increase in the coordination number produced by previous fragmentation.  相似文献   
953.
The assessment of the out-of-plane response of masonry structures has been largely investigated in literature assuming that walls respond as rigid or semi-rigid bodies, and relevant equations of motion of single-degree-of-freedom and multi-degree of freedom systems have been proposed. Therein, energy dissipation has been usually modelled resorting to the classical hypotheses of impulsive dynamics, delivering a velocity-reduction coefficient of restitution applied at impact. In fewer works, a velocity-proportional damping force has been introduced, by means of a viscous coefficient being constant or variable. A review of such models is presented, a criterion for equivalence of dissipated energy is proposed, equations predicting equivalent viscous damping ratios are derived and compared with experimental responses. Finally, predictive equations are examined in terms of incremental dynamic analyses for large sets of natural ground motions.  相似文献   
954.
Typical low-rise masonry buildings consist of unreinforced masonry (URM) walls covered with various timber roof configurations generally supported or finished by masonry gables. Post-earthquake observations and experimental outcomes highlighted the large vulnerability of the URM gables to the development of overturning mechanisms, both because of the inertial out-of-plane excitation and the in-plane timber diaphragm deformability. This paper presents the static and dynamic experimental seismic performance of three full-scale roofs tested via quasi-static cyclic and shake table tests. Two of them were tested as part of a whole full scale one-storey and two-storey building. A single-degree-of-freedom (SDOF) numerical model is calibrated against experimental data and proposed for the analysis of this roof typology's dynamic behaviour. Several sets of analyses were conducted to assess the vulnerability of these structural components and to study the effect of the whole building's characteristics (eg, number of storeys and structural stiffness and strength) on the seismic performance of this roof typology.  相似文献   
955.
The in-plane capacity of unreinforced masonry (URM) elements may vary considerably depending on several factors, including boundary conditions, aspect ratio, vertical overburden, and masonry texture. Since the overall system resistance mainly relies on the in-plane lateral capacity of URM components when out-of-plane modes are adequately prevented, the structural assessment of URM structures could benefit from advanced numerical approaches able to account for these factors simultaneously. This paper aims at enhancing and optimising the employment of the distinct element method, currently confined to the analysis of local mechanisms of reduced-scale dry-joint blocky assemblies, with a view to simulate the experimentally observed responses of a series of URM full-scale specimens with mortared joints subjected to quasi-static in-plane cyclic loading. To this end, a mesoscale modelling approach is proposed that employs a simplified microscale modelling approach to effectively capture macroscale behaviour. Dynamic relaxation schemes are employed, in combination with time, size, and mass-scaling procedures, to decrease computational demand. A new methodology for numerically describing both unit, mortar and hybrid failure modes, also including masonry crushing due to high-compression stresses, is proposed. Empirical and homogenisation formulae for inferring the elastic properties of interface between elements are also verified, enabling the proposed approach to be applied more broadly. Using this modelling strategy, the interaction between stiffness degradation and energy dissipation rate was accounted for numerically. Although the models marginally underestimate the energy dissipation in the case of slender piers, a good agreement was obtained in terms of lateral strength, hysteretic response, and crack pattern.  相似文献   
956.
957.
The links between flood frequency and rates of channel migration are poorly defined in the ephemeral rivers typical of arid regions. Exploring these links in desert fluvial landscapes would augment our understanding of watershed biogeochemistry and river morphogenesis on early Earth (i.e. prior to the greening of landmasses). Accordingly, we analyse the Mojave River (California), one of the largest watercourses in the Great Basin of the western United States. We integrate discharge records with channel-migration rates derived from dynamic time-warping analysis and chronologically calibrated subsidence rates, thereby constraining the river's formative conditions. Our results reveal a slight downstream decrease in bankfull discharge on the Mojave River, rather than the downstream increase typically exhibited by perennial streams. Yet, the number of days per year during which the channel experiences bankfull or higher stages is roughly maintained along the river's length. Analysis of historical peak flood records suggests that the incidence of channel-formative events responds to modulation in watershed runoff due to the precipitation in the river's headwaters over decades to centuries. Our integrated analysis finally suggests that, while maintaining hydraulic geometries that are fully comparable with many other rivers worldwide, ephemeral desert rivers akin to the Mojave are capable of generating a surprisingly wide range of depositional geometries in the stratigraphic record. © 2020 John Wiley & Sons, Ltd.  相似文献   
958.
IWr~IOXThe Nansha Islands area of the mouth China Sea is located at the margin of the West Pacificwarm POOl. Its variations in physical and chemical properties, namely, the stability of the WestPacific warm afl, involve the global climatic changes, for instance, EI Nino events caused theglobal climatic anomaly in the recent years and evolution of East Asian mourn. Therefore thearea is of imPOrtance for the global climatic changes. Recently recovered deep-sea sediment coresfrom the are…  相似文献   
959.
Giant micrometeorites (MMs; 400–2000 µm) are exceedingly rare and scientifically valuable. Three‐dimensional nondestructive characterization by X‐ray computed tomography (X‐CT) provides information on the petrography and thus petrogenesis of MMs and serves as a guide to maximize subsequent multi‐analytical studies on such precious planetary materials. Here, we discuss the results obtained by X‐CT on 22 giant MMs and the classification based on their 3‐D density contrast images. Scoriaceous and unmelted MMs have distinct porosity ranges (10–40 vol% versus 0–25 vol%, respectively). We observe a porosity variation inside scoriaceous MMs, which allows their atmospheric entry flight history to be resolved. For the first time, spinning entry is explicitly demonstrated for four partially melted MMs. Furthermore, we are able to resolve the thermal gradient in a single particle, based on porosity variation (seen as a progressive increase in pore abundance and size with higher peak temperatures). Moreover, we explore parent body alteration through the 3‐D analysis of pores distribution, showing that shock fabrics are either absent or weakly developed in our data set. Finally, owing to the detection of pseudomorphic chondrules, we estimate that the intensively aqueously altered C1 or CI‐like material could represent 18% of the MM flux at this size fraction (400–1000 µm).  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号