首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   4篇
  国内免费   3篇
测绘学   5篇
大气科学   8篇
地球物理   44篇
地质学   60篇
海洋学   5篇
天文学   19篇
综合类   1篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   7篇
  2018年   10篇
  2017年   6篇
  2016年   8篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   11篇
  2011年   6篇
  2010年   7篇
  2009年   20篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1985年   1篇
  1980年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有148条查询结果,搜索用时 93 毫秒
51.
The Colorado River system in southern Utah and northern Arizona is continuing to adjust to the baselevel fall responsible for the carving of the Grand Canyon. Estimates of bedrock incision rates in this area vary widely, hinting at the transient state of the Colorado and its tributaries. In conjunction with these data, we use longitudinal profiles of the Colorado and tributaries between Marble Canyon and Cataract Canyon to investigate the incision history of the Colorado in this region. We find that almost all of the tributaries in this region steepen as they enter the Colorado River. The consistent presence of oversteepened reaches with similar elevation drops in the lower section of these channels, and their coincidence within a corridor of high local relief along the Colorado, suggest that the tributaries are steepening in response to an episode of increased incision rate on the mainstem. This analysis makes testable predictions about spatial variations in incision rates; these predictions are consistent with existing rate estimates and can be used to guide further studies. We also present cosmogenic nuclide data from the Henry Mountains of southern Utah. We measured in situ 10Be concentrations on four gravel‐covered strath surfaces elevated from 1 m to 110 m above Trachyte Creek. The surfaces yield exposure ages that range from approximately 2·5 ka to 267 ka and suggest incision rates that vary between 350 and 600 m/my. These incision rates are similar to other rates determined within the high‐relief corridor. Available data thus support the interpretation that tributaries of the Colorado River upstream of the Grand Canyon are responding to a recent pulse of rapid incision on the Colorado. Numerical modeling of detachment‐limited bedrock incision suggests that this incision pulse is likely related to the upstream‐dipping lithologic boundary at the northern edge of the Kaibab upwarp. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
52.
The variation of the total ozone column (TOC) before, during, and after tropical cyclones occurring in the pre-monsoon and post-monsoon periods over the Bay of Bengal and the Arabian Sea for the period 1997–2009 is presented. From the analysis, it is concluded that TOC decreases steadily before and during the formation of a cyclone, followed by a more or less increasing trend after dissipation of the cyclone. It is also observed that, when the cyclone reaches its peak intensity indicated by its maximum wind speed, there is a sudden fall in TOC over those regions where the cyclone has intensified. The observed variation of TOC is consistent with existing chemical and dynamical theories.  相似文献   
53.
Arsenic contaminated waters are not uncommon; indeed from naturally occurring contaminated waters through to those that are a direct consequence of human activities such as mining, all are affecting the quality of water resources worldwide. The ever increasing demands on natural water resources mean that the effective control of this toxic contaminant is paramount and this is reflected in the ever increasing global legislation.There are currently three mechanisms by which arsenic is commercially treated in effluents. These are physical separation processes such as reverse osmosis, precipitation/adsorption processes, some of which are bacterially assisted, and a whole variety of ion exchange processes, again with some bacterial enhancement. The choice of treatment is not only driven by cost but by the chemistry of the water and the water quality standard to be met.In this study a very high arsenic enriched groundwater, containing in excess of 25,000 µg/L arsenic, was treated by a typical treatment method through a continuously operated pilot plant. In the treatment, iron III salts were added to the influent in order to form precipitates with the arsenic and to form an adsorptive surface that would assist with treatment of the enriched water. This addition of iron III salts for the removal of arsenic is common practice in the water treatment industry as the resulting iron III arsenates are highly stable.However, results from the pilot plant show that the process was further enhanced by the addition of small amounts of hydrogen peroxide. Hydrogen peroxide is a powerful oxidising reagent and assists in ensuring the complete conversion of any arsenic III to arsenic V that was then effectively removed in the pilot plant. After treatment residual arsenic levels of 10 µg/L were obtained compared to 68 µg/L without oxidation reagent addition.  相似文献   
54.
55.
Petrographic and geochemical data on the sandstones of the Proterozoic intracratonic Kaladgi–Badami basin, southern India are presented to elucidate the palaeoweathering pattern, and composition and tectonics of their provenance. The Kaladgi–Badami basin, hosting the Kaladgi Supergroup, occupies an E–W trending area. The Supergroup unconformably overlies Archaean basement TTG gneisses, granites and greenstones, comprises a cyclic arenite–pelite–carbonate association and is divided into the Bagalkot and Badami Groups. The immature arkosic character of the basal Saundatti Quartzite Member (Bagalkot Group) containing fresh and angular feldspars, along the northern margin of the basin, suggests that during the initial stage of deposition, this part of the basin received sediments from a restricted, uplifted and less weathered source dominated by K-rich granites occurring to the north. In contrast, the Saundatti Quartzite along the southern margin displays a mostly mature, quartz-rich character with less abundant but severely weathered feldspars, and higher SiO2 and CIA but lower Al2O3, TiO2, Rb, Sr, Ba, K2O, K2O/Na2O, Zr/Ni and Zr/Cr. This is interpreted in terms of a tectonically stable, considerably weathered mixed source (Archaean gneisses, granites and greenstones) along the southern fringe of the basin. The highly mature (quartz arenite) Muchkundi Quartzite Member (also of the Bagalkot Group), occurring higher up in the succession, exhibits minor but severely altered feldspars, and higher SiO2, Na2O, CIA, Cr and Ni with lower K2O, Al2O3, TiO2 and K2O/Na2O. This reflects that with the passage of time the source evolved to a uniform, extensively weathered, tectonically stable peneplained provenance which consisted of less evolved TTG gneisses and greenstones. This was followed by closure, deformation and upliftment of the basin hosting the Bagalkot Group and subsequent deposition of the Badami Group. Sandstone Members of this younger Group (Cave-Temple Arenite and Belikhindi Arenite) range widely in mineralogy (quartz arenite to arkose) and chemistry (including CIA), and point to a source that varied from uplifted, less weathered K-rich granites to less evolved, peneplained TTG gneisses and greenstones or even Bagalkot sediments. Variable alteration of feldspars in the Kaladgi sandstones and severe depletion of Ca, Na and Sr in the associated shales indicate a humid tropical (tropical and subtropical) climate facilitating chemical weathering.  相似文献   
56.
Modeling of progressive development of zones of large inelastic shear deformation (shear band) that results from strain‐softening behavior of sensitive clays could explain the failure mechanisms of large landslides. Because of toe erosion, a shear band can be initiated and propagated upward (inward) from the river bank. On the other hand, upslope surcharge loading could generate shear bands that might propagate down towards the river bank. In the present study, upward and downward propagation of shear bands and failure of sensitive clay slopes are modeled using the Coupled Eulerian Lagrangian approach in Abaqus finite element (FE) software. It is shown that the formation and propagation of shear bands are significantly influenced by kinematic constraints that change with displacements of the soil masses, and therefore the propagation of an existing shear band might be stopped and new shear bands could be formed. The main advantages of the present FE modeling are: (i) extremely large strains in the shear bands can be successfully simulated without numerical issues, (ii) a priori definition of shearing zones is not required to tackle severe strains; instead, the FE program automatically identifies the critical locations for shear band formation and propagation. Toe erosion could significantly increase the slope failure potential because of upslope surcharge loading. FE analyses with a thick and thin sensitive clay layers show that the global failure could occur at lower surcharge loads in the former as compared to the latter cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
57.
Cost Optimization of Reinforced Earth Walls   总被引:1,自引:0,他引:1  
This paper deals with optimum cost (objective function) design of geosynthetic reinforced earth retaining walls subjected to static and dynamic loading. The design restrictions are imposed as design constraints in the analysis. Choice of the initial designed length and strength of the reinforcement, which are the elements of the design vectors are made in a way that it forms an initial feasible design vector. Thus the problem is one of mathematical programming. The constraints and the objective function being nonlinear in nature, the Sequential Unconstrained Minimization Technique (SUMT) has been used in conjunction with conjugate direction and quadratic fit methods for multidimensional and unidirectional minimization to arrive at the optimal (minimum) cost of the reinforced earth wall. Optimal cost tables are presented for different combinations of the loading and the developed procedure is validated by taking up an example problem. It has been found from the typical example problem that saving of the order of 7–8% can be made over the conventional design of mechanically stabilized earth (MSE) walls with the aid of design charts.  相似文献   
58.
59.
60.
The environment prevalent in ocean necessitates the piles supporting offshore structures to be designed against lateral cyclic loading initiated by wave action, which induces deterioration in the strength and stiffness of the pile-soil system introducing progressive reduction in the bearing capacity associated with increased settlement of the pile foundation. A thorough and detailed review of literature indicates that significant works have already been carried out in the relevant field of investigation. It is a well established phenomenon that the variation of relative pile-soil stiffness (K rs ) and load eccentricity (e/D) significantly affect the response of piles subjected to lateral static load. However, the influence of lateral cyclic load on axial response of single pile in sand, more specifically the effect of K rs and e/D on the cyclic behavior, is yet to be investigated. The present work has aimed to bridge up this gap. To carry out numerical analysis (boundary element method), the conventional elastic approach has been used as a guideline with relevant modifications. The model developed has been validated by comparing with available experimental (laboratory model and field tests) results, which indicate the accuracy of the solutions formulated. Thereafter, the methodology is applied successfully to selected parametric studies for understanding the magnitude and pattern of degradation of axial pile capacity induced due to lateral cyclic loading, as well as the influence of K rs and e/D on such degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号