首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   9篇
  国内免费   1篇
测绘学   1篇
大气科学   18篇
地球物理   44篇
地质学   41篇
海洋学   13篇
天文学   33篇
自然地理   12篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   7篇
  2011年   10篇
  2010年   3篇
  2009年   7篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1990年   3篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1979年   1篇
  1975年   3篇
  1973年   1篇
  1960年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
91.
Shock-induced recovery experiments were performed to investigate melt formation in porous sandstones in the low shock pressure regime between 2.5 and 17.5 GPa. The sandstone shocked at 2.5 and 5 GPa is characterized by pore closure, fracturing of quartz (Qtz), and compression and deformation of phyllosilicates; no melting was observed. At higher pressures, five different types of melts were generated around pores and alongside fractures in the sandstone. Melting of kaolinite (Kln), illite (Ill), and muscovite (Ms) starts at 7.5, 12, and 15 GPa, respectively. The larger the amount of water in these minerals (Kln ~14 wt%, Ill ~6–10 wt%, and Ms ~4 wt% H2O), the higher the shock compressibility and the lower the shock pressure required to induce melting. Vesicles in the almost dry silicate glasses attest to the loss of structural water during the short shock duration of the experiment. The compositions of the phyllosilicate-based glasses are identical to the composition of the parental minerals or their mixtures. Thus, this study has demonstrated that phyllosilicates in shocked sandstone undergo congruent melting during shock loading. In experiments at 10 GPa and higher, iron melt from the driver plate was injected into the phyllosilicate melts. During this process, Fe is partitioned from the metal droplets into the surrounding silicate melts, which induced unmixing of silicate melts with different chemical properties (liquid immiscibility). At pressures between 7.5 and 15 GPa, a pure SiO2 glass was formed, which is located as short and thin bands within Qtz grains. These bands were shown to contain tiny crystals of experimentally generated stishovite.  相似文献   
92.
Although poorly understood, the north–south distribution of the natural component of atmospheric CO2 offers information essential to improving our understanding of the exchange of CO2 between the atmosphere, oceans, and biosphere. The natural or unperturbed component is equivalent to that part of the atmospheric CO2 distribution which is controlled by non-anthropogenic CO2 fluxes from the ocean and terrestrial biosphere. Models should be able to reproduce the true north–south gradient in CO2 due to the natural component before they can reliably estimate present-day CO2 sources and sinks and predict future atmospheric CO2. We have estimated the natural latitudinal distribution of atmospheric CO2, relative to the South Pole, using measurements of atmospheric CO2 during 1959–1991 and corresponding estimates of anthropogenic CO2 emissions to the atmosphere. Key features of the natural latitudinal distribution include: (1) CO2 concentrations in the northern hemisphere that are lower than those in the southern hemisphere; (2) CO2 concentration differences that are higher in the tropics (associated with outgassing of the oceans) than those currently measured; and (3) CO2 concentrations over the southern ocean that are relatively uniform. This natural latitudinal distribution and its sensitivity to increasing fossil fuel emissions both indicate that near-surface concentrations of atmospheric CO2 in the northern hemisphere are naturally lower than those in the southern hemisphere. Models that find the contrary will also mismatch present-day CO2 in the northern hemisphere and incorrectly ascribe that region as a large sink of anthropogenic CO2.  相似文献   
93.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   
94.
It has been almost exactly half a century since the first synthesis of stishovite in shock experiments on quartz was reported, but its formation conditions during shock is still under debate. Here, we present direct transmission electron microscopic observation of stishovite within material recovered from high‐explosive shock experiments on porous sandstone shocked at 7.5 and 12.5 GPa. Our observations allow for new conclusions on the genesis of stishovite in a close‐to‐nature environment. The formation of stishovite in short‐time shock experiments proves that its crystallization is ultrafast (<1 μs). Crystals were found only embedded in amorphous veins indicating homogeneous nucleation. Crystallization from melt rather than from glass can be concluded from the observation of roundish, defect‐free crystals up to 150 nm in diameter embedded in nondensified glass. The formation of stishovite at 7.5 GPa is in accordance with the phase diagram of silica, if rapid undercooling is present that becomes only possible by the existence of small hot spots in an otherwise cold material, which is supported by transient heat calculation. The absence of coesite at 7.5 GPa suggests kinetic hindrance of its crystallization from melt and, thus, smaller critical cooling rates compared to stishovite where critical cooling rates are estimated to be as large as 1011 K s?1. While the amorphous veins containing stishovite represent unambiguously hot spots, no associated pressure amplification could be verified within these veins. The rapid liquidus crystallization of stishovite only in hot spots generated in porous material is an alternative formation mechanism to the widely accepted theory of solid–solid transition from quartz to stishovite and might represent the more general mechanism occurring in nature for low shock pressure events.  相似文献   
95.
In an ecosystem approach to fisheries (EAF), management must draw on information of widely different types, and information addressing various scales. Knowledge-based systems assist in the decision-making process by summarising this information in a logical, transparent and reproducible way. Both rule-based Boolean and fuzzy-logic models have been used successfully as knowledge-based decision support tools. This study compares two such systems relevant to fisheries management in an EAF developed for the southern Benguela. The first is a rule-based system for the prediction of anchovy recruitment and the second is a fuzzy-logic tool to monitor implementation of an EAF in the sardine fishery. We construct a fuzzy-logic counterpart to the rule-based model, and a rule-based counterpart to the fuzzy-logic model, compare their results, and include feedback from potential users of these two decision support tools in our evaluation of the two approaches. With respect to the model objectives, no method clearly outperformed the other. The advantages of numerically processing continuous variables, and interpreting the final output, as in fuzzy-logic models, can be weighed up against the advantages of using a few, qualitative, easy-to-understand categories as in rule-based models. The natural language used in rule-based implementations is easily understood by, and communicated among, users of these systems. Users unfamiliar with fuzzy-set theory must “trust” the logic of the model. Graphical visualization of intermediate and end results is an important advantage of any system. Applying the two approaches in parallel improved our understanding of the model as well as of the underlying problems. Even for complex problems, small knowledge-based systems such as the ones explored here are worth developing and using. Their strengths lie in (i) synthesis of the problem in a logical and transparent framework, (ii) helping scientists to deliberate how to apply their science to transdisciplinary issues that are not purely scientific, and (iii) representing vehicles for delivering state-of-the-art science to those who need to use it. Possible applications of this approach for ecosystems of the Humboldt Current are discussed.  相似文献   
96.
Chemical characterization of cryptotephra is critical for temporally linking archaeological sites. Here, we describe cryptotephra investigations of two Middle–Upper Paleolithic sites from north-west Italy, Arma Veirana and Riparo Bombrini. Cryptotephra are present as small (<100 µm) rhyolitic glass shards at both sites, with geochemical signatures rare for volcanoes in the Mediterranean region. Two chemically distinct shard populations are present at Arma Veirana (P1 and P2). P1 is a high silica rhyolite (>75 wt.%) with low FeO (<1 wt.%) and a K2O/Na2O > 1 and P2 is also a high silica rhyolite (>75 wt.%) but with higher FeO (2.33–2.65 wt.%). Shards at Riparo Bombrini (P3) are of the same composition as P1 shards at Arma Veirana, providing a distinct link between deposits at both sites. Geochemical characteristics suggest three possible sources for P1 and P3: eruptions from Lipari Island (56–37.7 ka) in Italy, the Acigöl volcanic field (200–20 ka) in Turkey and the Miocene Kirka-Phrigian caldera (18 Ma) in Turkey. Eruptions from Lipari Island are the most likely source for P1,3 cryptotephra. This study highlights how cryptotephra can benefit archaeology, by providing a direct link between Arma Veirana and Riparo Bombrini as well as other deposits throughout the Mediterranean.  相似文献   
97.
Exploring adaptation pathways into an uncertain future can support decisionmaking in achieving sustainable water management in a changing environment. Our objective is to develop and test a method to identify such pathways by including dynamics from natural variability and the interaction between the water system and society. Present planning studies on long-term water management often use a few plausible futures for one or two projection years, ignoring the dynamic aspect of adaptation through the interaction between the water system and society. Our approach is to explore pathways using multiple realisations of transient scenarios with an Integrated Assessment Meta Model (IAMM). This paper presents the first application of the method using a hypothetical case study. The case study shows how to explore and evaluate adaptation pathways. With the pathways it is possible to identify opportunities, threats, timing and sequence of policy options, which can be used by policymakers to develop water management roadmaps into the future. By including the dynamics between the water system and society, the influence of uncertainties in both systems becomes clearer. The results show, among others, that climate variability rather than climate change appears to be important for taking decisions in water management.  相似文献   
98.
99.
A combination of shock recovery experiments and numerical modeling of shock deformation in the low‐shock pressure range from 2.5 to 20 GPa for two dry sandstone types of different porosity, a completely water‐saturated sandstone, and a well‐indurated quartzite provides new insights into strongly heterogeneous distribution of different shock features. (1) For nonporous quartzo‐feldspathic rocks, the traditional classification scheme (Stöffler 1984 ) is suitable with slight changes in pressure calibration. (2) For water‐saturated quartzose rocks, a cataclastic texture (microbreccia) seems to be typical for the shock pressure range up to 20 GPa. This microbreccia does not show formation of PDFs but diaplectic quartz glass/SiO2 melt is formed at 20 GPa (~1 vol%). (3) For porous quartzose rocks, the following sequence of shock features is observed with progressive increase in shock pressure (1) crushing of pores, (2) intense fracturing of quartz grains, and (3) increasing formation of diaplectic quartz glass/SiO2 melt replacing fracturing. The formation of diaplectic quartz glass/SiO2 melt, together with SiO2 high‐pressure phases, is a continuous process that strongly depends on porosity. This experimental observation is confirmed by our concomitant numerical modeling. Recalibration of the shock classification scheme results in a porosity versus shock pressure diagram illustrating distinct boundaries for the different shock stages.  相似文献   
100.
A model of core formation is presented that involves the Earth accreting heterogeneously through a series of impacts with smaller differentiated bodies. Each collision results in the impactor's metallic core reacting with a magma ocean before merging with the Earth's proto-core. The bulk compositions of accreting planetesimals are represented by average solar system abundances of non-volatile elements (i.e. CI-chondritic), with 22% enhancement of refractory elements and oxygen contents that are defined mainly by the Fe metal/FeO silicate ratio. Based on an anhydrous bulk chemistry, the compositions of coexisting core-forming metallic liquid and peridotitic silicate liquid are calculated by mass balance using experimentally-determined metal/silicate partition coefficients for the elements Fe, Si, O, Ni, Co, W, Nb, V, Ta and Cr. Oxygen fugacity is fixed by the partitioning of Fe between metal and silicate and depends on temperature, pressure and the oxygen content of the starting composition. Model parameters are determined by fitting the calculated mantle composition to the primitive mantle composition using least squares minimization. Models that involve homogeneous accretion or single-stage core formation do not provide acceptable fits. In the most successful models, involving 24 impacting bodies, the initial 60–70% (by mass) of the Earth accretes from highly-reduced material with the final 30–40% of accreted mass being more oxidised, which is consistent with results of dynamical accretion simulations. In order to obtain satisfactory fits for Ni, Co and W, it is required that the larger (and later) impactor cores fail to equilibrate completely before merging with the Earth's proto-core, as proposed previously on the basis of Hf-W isotopic studies. Estimated equilibration conditions may be consistent with magma oceans extending to the core–mantle boundary, thus making core formation extremely efficient. The model enables the compositional evolution of the Earth's mantle and core to be predicted throughout the course of accretion. The results are consistent with the late accretion of the Earth's water inventory, possibly with a late veneer after core formation was complete. Finally, the core is predicted to contain ~ 5 wt.% Ni, ~ 8 wt.% Si, ~ 2 wt.% S and ~ 0.5 wt.% O.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号