首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   7篇
测绘学   4篇
大气科学   36篇
地球物理   31篇
地质学   105篇
海洋学   22篇
天文学   36篇
综合类   1篇
自然地理   14篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   10篇
  2013年   8篇
  2012年   18篇
  2011年   13篇
  2010年   8篇
  2009年   16篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   11篇
  2004年   10篇
  2003年   8篇
  2002年   11篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   8篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1961年   1篇
排序方式: 共有249条查询结果,搜索用时 765 毫秒
81.
The reason some VMS deposits contain more gold or other metals than others might be due to the influence of intrusions. A new approach examining this possibility is based on examining the information about many VMS deposits to test statistically if those with associated intrusions have significantly different grades or amounts of metals. A set of 632 VMS deposits with reported grades, tonnages, and information about the observed presence or absence of subvolcanic or plutonic intrusive bodies emplaced at or after VMS mineralization is statistically analyzed.Deposits with syn-mineralization or post-mineralization intrusions nearby have higher tonnages than deposits without reported intrusions, but the differences are not statistically significant. When both kinds of intrusions are reported, VMS deposit sizes are significantly higher than in the deposits without any intrusions. Gold, silver, zinc, lead, and copper average grades are not significantly different in the VMS deposits with nearby intrusions compared to deposits without regardless of relative age of intrusive. Only zinc and copper contents are significantly higher in VMS deposits with both kinds of intrusive reported. These differences in overall metal content are due to significantly larger deposit sizes of VMS deposits where both intrusive kinds are observed and reported, rather than any difference in metal grades.  相似文献   
82.
Because of several difficulties with the application of radiocarbon (14C) dating to Arctic Ocean sediments, numeric dating techniques are needed that can complement, supplant and reach beyond the 14C method. However, large age overestimates (often >7 kyr) for near-sediment-water-interface horizons from Arctic Ocean cores have been almost universal when luminescence dating has been applied to multigrain aliquots of fine silt (4–11 μm) quartz and feldspar grains. Here micro-hole quartz-grain photon-stimulated-luminescence (PSL) dating is applied to the 0.5–2.0 cm horizons of multicores from high-sedimentation-rate sites spanning depths from 87 m to 1140 m at the Alaska margin of the Arctic Ocean. Expected near zero ages (0–200 a) result when grains larger than ~11 μm are used, demonstrating that fine-silt age overestimations here and perhaps elsewhere in the Arctic Ocean are a function of grain and aliquot size. At the 87 m site, the micro-hole PSL approach revealed no significant gradient in age estimates over the 1–26 cm horizon range, implying that bioturbation reached to at least 26 cm. Micro-hole PSL dating of 25–62 μm quartz grains from trans-ocean sea-ice sediment also produced expected near zero ages, in contrast to earlier reported long-bleach multigrain PSL results from 4–11 μm fractions of the same samples. The micro-hole PSL approach thus surmounts the age overestimation problem associated with the use of multigrain silt fractions, and overcomes limitations of the 14C method in this region. Finally, results unexpectedly suggest the potential of micro-hole quartz PSL for use in provenance studies of Arctic Ocean sea-ice sediment.  相似文献   
83.
New seismic data off East Greenland were acquired in the summer of 2002, between 77°N and 81°N, north of the Greenland Fracture zone. The data were combined with results from the Greenland Basin and ODP site 909, and indicate a pronounced middle Miocene unconformity within the deep sea basins between 72°N and 81°N. Seismic unit NA-1 consists of sediments older than middle Miocene age and unit NA-2 contains sediments younger than the middle Miocene. Classification of a thinly bedded succession in the Molloy Basin resulted in a subdivision into four units (unit I, unit II, unit IIIA and unit IIIB). A comparison of volume estimations and sediment thickness maps between 72°N and 81°N indicates differences in sediment accumulation in the Greenland, Boreas and Molloy basins. Important controls on the variation of accumulation included different opening times of the basins, as well as tectonic conditions and varying sources of sediment transport.Due to prominent basement structures and the varying reflection character of the sediments along the entire East Greenland margin, we defined an age model of shelf sediments on the basis of similar sediment deposit geometry and known results from other regions. The seismic sequences on the shelf up to an age of middle Miocene are divided into three sub-units along the East Greenland margin: middle Miocene–middle late Miocene (SU-3), middle late Miocene–Pleistocene (SU-2), Pleistocene (SU-1). The differences in the geometry of the sequences show more ice stream related sedimentation between 72°N and 77°N and more ice sheet related sedimentation north of 78°N. The region south of 68°N is dominated by more aggradational sedimentary strata so that a glacio-fluvial drainage seems the main transport mechanism. Due to the Greenland Inland–ice borderlines, we assume the glaciers between the Scoresby Sund and 68°N did not reach the shelf break. A first comparison of the sediment structure of the Northeast Greenland margin with the Southeast Greenland margin made it possible to demonstrate significant differences in sedimentation along this margin.  相似文献   
84.
We have analyzed a Late Holocene record, almost 5000 years long, consisting of varved sediments deposited in the oxygen-minimum zone (OMZ) off Pakistan. We searched for cyclicity in the series of varve thickness (“varve” cycles), of unusually large excursions in varve thickness (“agitation” cycles), and of abundance of turbidites (“turbidite” cycles). We found the following high-frequency cycles (periods between 10 and 100 years) in one or several of the three types of series as follows: near 12.4, 14–15, 16.8, 18.6 (strong, agitation), 25–26 (strong, turbidite), 29–31 (strong, agitation), 39 (varve), 44 (strong, turbidite), 51–54 (strong, agitation), 56 (strong, varve), 64 (strong, turbidite), 69, 77 (strong, turbidite), 82 (very strong, agitation), and 95 years (strong, varve). Low-frequency cycles center around 99–115, 125 (very strong, varve), 164, 177, 202, 242–255 (strong, agitation and turbidite), 280 (strong, varve; doubled, turbidite), 340–370 and 460–490 years.Some cycles of varve thickness match the cyclicity of turbidite frequency (12.3, 14–15, 25–26, 245–255 years) but similarities between spectra are not striking. Taken as a whole, however, the sequence of cycles detected (by autocorrelation and standard Fourier analysis) seems to contain a large proportion of multiples of the basic tidal cycles 4.425 (lunar perigee cycle) and 9.3 years (lunar half-nodal cycle). This impression is supported by testing the three binned spectra for whole-number multiples and fractions as well as whole-number beat structure. We therefore propose that a large proportion of the cyclicity detected can be ascribed to tidal action. Our record also contains evidence for the presence of the 1470-year cycle previously reported from the glacial-age Greenland ice record. The main harmonics of this Greenland cycle can be tied to the pattern of periods seen in the varved sediments. We hypothesize that tidal action produces the cycle, and that the reason for its great length is the requirement that maximum tidal activity has to fall into a narrow seasonal window to be geologically effective.  相似文献   
85.
86.
Broadleaf coppice forests have the capacity to mitigate the threat posed by rockfall in many mountainous regions. Other forest types alike the rockfall protective effect is determined by the mechanical resistance of the coppice tree stems. In addition, the rockfall protective function of coppice forests is enhanced by specific stem aggregations (clumps) that have a rock interception and retention effect difficult to evaluate. The main objectives of this study are to quantify the mechanical resistance of small diameter coppice stems and to gain qualitative insight on breakage behavior. The aim is to supply data for more reliable assessments of the rockfall protective function of coppice forests with rockfall simulation models and to provide a basis for better estimating the rockfall protective effect of coppice clumps. To achieve these objectives we assessed the mechanical resistance of 73 beech (Fagus sylvatica L.) coppice stems using an impact pendulum device. We found an exponential relationship between the stem diameter at breast height (DBH) and mechanical resistance (loss of momentum or kinetic energy of the impactor during impact). Moreover, the results show that the high flexibility of the stems leads to relatively long lasting impacts and only negligible damage at the point of impact on the stem. As a result, the mechanical resistance of the stems is partly determined by impactor velocity and mass. These findings question the practicality of defining mechanical resistance by means of the change of momentum or energy of the impactor. Moreover, the results highlight the limits of upscaling or downscaling the data of this study to conclude for the mechanical resistance of beech trees of other than the tested dimensions. For the target DBH range the obtained dataset is nevertheless more reliable than data of previous studies, because the DBH specific impact process could be considered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
87.
The study of short-duration gamma-ray bursts (GRBs) experienced a complete revolution in recent years thanks to the discovery of the first afterglows and host galaxies starting in May 2005. These observations demonstrated that short GRBs are cosmological in origin, reside in both star forming and elliptical galaxies, are not associated with supernovae, and span a wide isotropic-equivalent energy range of ~1048–1052 erg. However, a fundamental question remains unanswered: What are the progenitors of short GRBs? The most popular theoretical model invokes the coalescence of compact object binaries with neutron star and/or black hole constituents. However, additional possibilities exist, including magnetars formed through prompt channels (massive star core-collapse) and delayed channels (binary white dwarf mergers, white dwarf accretion-induced collapse), or accretion-induced collapse of neutron stars. In this review I summarize our current knowledge of the galactic and sub-galactic environments of short GRBs, and use these observations to draw inferences about the progenitor population. The most crucial results are: (i) some short GRBs explode in dead elliptical galaxies; (ii) the majority of short GRBs occur in star forming galaxies; (iii) the star forming hosts of short GRBs are distinct from those of long GRBs, and instead appear to be drawn from the general field galaxy population; (iv) the physical offsets of short GRBs relative to their host galaxy centers are significantly larger than for long GRBs; (v) there is tentative evidence for large offsets from short GRBs with optical afterglows and no coincident hosts; (vi) the observed offset distribution is in good agreement with predictions for NS–NS binary mergers; and (vii) short GRBs trace under-luminous locations within their hosts, but appear to be more closely correlated with the rest-frame optical light (old stars) than the UV light (young massive stars). Taken together, these observations suggest that short GRB progenitors belong to an old stellar population with a wide age distribution, and generally track stellar mass. These results are fully consistent with NS–NS binary mergers and rule out a dominant population of prompt magnetars. However, a partial contribution from delayed magnetar formation or accretion-induced collapse is also consistent with the data.  相似文献   
88.
This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes.  相似文献   
89.
The combination of magmatic, structural and fission track (FT) data is used to unravel Oligocene/Miocene near-surface tectonics in the internal Western Alps. This includes reburial of parts of the already exhumed Sesia-Lanzo Zone and their subsequent re-exhumation. We define blocks mainly on the base of their Oligocene–Miocene cooling history (FT data) and on published paleomagnetic data. The preservation of a paleosurface allows a detailed reconstruction of the exhumation, burial and re-exhumation of different tectonic blocks. Near-surface, rigid block rotation is responsible for the reburial of the Lower Oligocene paleosurface in part of the Sesia-Lanzo Zone (the Cervo Block) and for the conjugate uplift of deeper portions of the Ivrea-Verbano Zone (the Sessera-Ossola Block). This block rotation around the same horizontal axes produces in the currently exposed portions of the two blocks, quite different temperature/time paths. While the surface of the Cervo Block is buried, the lower part of the Sessera-Ossola Block is uplifted. The rotation is constrained between the age of emplacement of the Biella Volcanic Suite on top of the Sesia-Lanzo Zone (32.5?Ma) and the intrusion of the Valle del Cervo Pluton (30.5?Ma). After this relative fast movements, the concerned blocks remained in (or underneath) the partial annealing zone of zircon until in Aquitanian times they were rapidly uplifted into the partial annealing zone of apatite. The further stage of exhumation out of the partial annealing zone of apatite extends over the entire Miocene. At that time, units of the external Western Alps underwent fast exhumation (external Brian?onnais, Valais). In addition to the well-known post-collisional deformation in the axial- and external Western Alps, the internal units (i.e., the upper plate) hold an apparent stable position in terms of exhumation.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号