首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   11篇
  国内免费   5篇
测绘学   5篇
大气科学   4篇
地球物理   65篇
地质学   51篇
海洋学   16篇
天文学   16篇
综合类   1篇
自然地理   21篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   15篇
  2010年   13篇
  2009年   8篇
  2008年   9篇
  2007年   11篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   12篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
21.
Natural Resources Research - The physical and chemical characteristics of mined phosphate rock will vary temporally as the location and nature of the ore body changes and as the type of equipment...  相似文献   
22.
A computer simulation model for transverse‐dune‐field dynamics, corresponding to a uni‐directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross‐sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no erosion in shadow zones. The second issue is overcome by introducing a wind speedup (shear velocity increase) factor, which can be accounted for by adding a term to the original transport length, which is proportional to the surface height. By incorporating these features we are able to model dunes whose individual shape and collective patterns are similar to those observed in nature. Moreover we show how the introduction of a non‐linear shear‐velocity‐increase term leads to the reduction of dune height, and this may result in an equilibrium dune field configuration. This is thought to be because the non‐linear increase of the transport length makes the sand trapping efficiency lower than unity, even for higher dunes, so that the incoming and the outgoing sand flux are in balance. To fully describe the inter‐dune morphology more precise dynamics in the lee of the dune must be incorporated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
23.
Large proportions of rainwater and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time-varying processes. Chlorofluorocarbon (CFC)-based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from nine different wells with depths of 2–18 m close to the stream network. Immediately below the water table, CFC-based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age-depth-relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.  相似文献   
24.
25.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   
26.
The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan–Kerala Basin, coupled with a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and offshore sediment loading in order to test competing conceptual models for the development of high‐elevation passive margins. The Konkan–Kerala Basin contains an estimated 109 000 km3 of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore infer that flexure is an important component in the development of the Western Indian Margin. There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic.  相似文献   
27.
Portable optically stimulated luminescence (OSL) readers are increasingly being used in geomorphological and archaeological investigations, but information regarding data reproducibility and the reliability of interpretations based on portable OSL reader data has not yet been presented to the wider geomorphological community. This Letter addresses these two issues by returning to Grabben Gullen Creek in the southeastern Australian Tablelands where we remeasure a sediment profile that was first measured by other researchers 3 years earlier. We also compare portable OSL reader data measured on sediment interpreted to have been deposited in swampy meadow wetlands and flood alluvium settings with data measured on known swampy meadow and flood deposits. Our data show that portable OSL reader data are reproducible. Moreover, we confirm the earlier interpretation that stratigraphies commonly exposed in southeastern Australian Tablelands valley bottoms reflect pre‐European swampy meadow wetlands and flood alluvium. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
28.
Within the greater Ar Rub' al Khali (Empty Quarter) sand sea lies an internal depocentre, the Al Liwa Basin, which comprises a variety of mega‐scale dune types. Crescentic dunes dominant the north of the basin while megadunes of stellate or star form are a major landform of the south‐eastern reaches. Their development into dune fields is determined by the style and rate of dune–dune interactions, the boundary conditions imposed by a multi‐modal wind regime, fluctuating groundwater levels, and sediment availability under an assortment of climatic conditions throughout the Quaternary. As a result, dune field patterns are a collective response to these perturbations in space, time and environment. The R‐statistic is a collective measure of these responses, and is a metric capable of identifying the degree of pattern maturity or self‐organization of the aeolian system, and the pathways from which patterns evolve. The spatial signature of the southerly located star dunes is characterized by two definitive patterns of organization: the first, one of complete spatial randomness, the second, a low degree of spatial uniformity. In isolation, these results appear to be unrelated to those for crescentic dunes of the region in which a significantly higher degree of pattern dispersion is the norm. However, when spatial statistical measures are integrated with the theoretical understanding of dune–dune interactions and the involvement of environmental agents, the complex morphodynamic pathways and linkages between regional dune fields is better understood. In this case, both constructive (e.g. merging, lateral linking) and regenerative activity (e.g. calving) have played important roles in the development of dune size, and associated adjustments in spacing, and dune numbers, and subsequently dune field patterns. Synergetic patterns are emblematic of this vast dunescape, whereby transitional geographic, morphologic, dimensional and environmental modifications exist between the mega‐crescentic and mega‐stellate dunes of the Empty Quarter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
29.
Abstract

SPOT multispectral and panchromatic data were evaluated to determine their utility to detect debris‐load characteristics of the Batura Glacier located in the Karakoram Himalaya. Debris‐depth measurements, surface samples, and ground photography were obtained and used with satellite‐derived information to produce supraglacial debris‐load and discharge estimates. Visual analysis of panchromatic data indicated that structural characteristics of the glacier exhibited unique textures associated with surface structure characteristics. Multispectral analysis revealed that stratified unsupervised classification of principal components can be used to produce classifications depicting supraglacial lithology and shallow debris‐load variability. Debris‐load discharge estimates ranged from 48–97 x 103 m3 yr1. These results indicate that SPOT multispectral data may be used to produce reasonable quantitative estimates of debris‐load characteristics for glacier mass balance and regional denudation studies.  相似文献   
30.
Discharge of the Shatt Al-Arab is believed to be a dominating component of the northern Arabian Gulf’s ecology and largely responsible for productivity of Kuwait’s fisheries. With major construction of dams on the Tigris and Euphrates Rivers in Turkey, river discharge has been substantially reduced, and flooding essentially eliminated. We attempted to relate river flow and shrimp landings indirectly by correlating 19 years of salinity and temperature data from Kuwait’s waters with corresponding annual shrimp landings. For green tiger prawns (Penaeus semisulcatus), the combination of October salinities and January temperatures provided the best correlation (r = 0.67) with landings in the following shrimping season. For the combined landings of jinga and kiddi shrimps (Metapenaeus affinis and Parapenaeopsis stylifera, respectively), December salinity during season and May temperature prior to season resulted in the best correlation (r = 0.87). Landings of these two species also correlated well with spring and summer temperatures. Under normal conditions, late winter or early spring temperatures prior to fishing season influence recruitment of the green tiger prawn, whereas December salinities during harvest season influence the abundance of jinga–kiddi shrimps. With further reductions in the Shatt Al-Arab discharge and the elimination of flood events, Kuwait’s shrimp landings will most likely decrease over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号