首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   12篇
  国内免费   1篇
测绘学   3篇
大气科学   6篇
地球物理   20篇
地质学   60篇
海洋学   4篇
天文学   41篇
自然地理   6篇
  2024年   1篇
  2023年   1篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   11篇
  2009年   7篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   4篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1976年   1篇
排序方式: 共有140条查询结果,搜索用时 31 毫秒
81.
82.
Because it is located both on the Mid‐Atlantic Ridge and on a mantle plume, Iceland is a region of intense tectonics and volcanism. During the last glaciation, the island was covered by an ice sheet approximately 1000 m thick. A reconstruction of the ice flow lines, based on glacial directional features, shows that the ice sheet was partly drained through fast‐flowing streams. Fast flow of the ice streams has been recorded in megascale lineations and flutes visible on the currently deglaciated bedrock, and is confirmed by simple mass balance considerations. Locations of the major drainage routes correlate with locations of geothermal anomalies, suggesting that ice stream activity was favoured by lubrication of the bed by meltwater produced in regions of high geothermal heat flux. Similar control of ice flow by geothermal activity is expected in ice sheets currently covering tectonically and volcanically active area such as the West Antarctic ice sheet. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
83.
Imaging spectrometers are highly effective instruments for investigation of planetary atmospheres. They present the advantage of coupling the compositional information to the spatial distribution, allowing simultaneous study of chemistry and dynamics in the atmospheres of Venus and Mars. In this work, we summarize recent results about the O2(a1Δg) night and day glows, respectively obtained by VIRTIS/Venus Express and OMEGA/Mars Express, the imaging spectrometers currently in orbit around Venus and Mars. The case of the O2(a1Δg - X3Σg) IR emission at 1.27 μm on the night side of Venus and the day side of Mars is analyzed, pointing out dynamical aspects of these planets, like the detection of gravity waves in their atmospheres. The monitoring of seasonal and daily airglow variations provides hints about the photochemistry on these planets.  相似文献   
84.
We have investigated the Na distributions in Semarkona Type II chondrules by electron microprobe, analyzing olivine and melt inclusions in it, mesostasis and bulk chondrule, to see whether they indicate interactions with an ambient gas during chondrule formation. Sodium concentrations of bulk chondrule liquids, melt inclusions and mesostases can be explained to a first approximation by fractional crystallization of olivine ± pyroxene. The most primitive olivine cores in each chondrule are mostly between Fa8 and Fa13, with 0.0022–0.0069 ± 0.0013 wt.% Na2O. Type IIA chondrule olivines have consistently higher Na contents than olivines in Type IIAB chondrules. We used the dependence of olivine–liquid Na partitioning on FeO in olivine as a measure of equilibration. Extreme olivine rim compositions are ~Fa35 and 0.03 wt.% Na2O and are close to being in equilibrium with the mesostasis glass. Olivine cores compared with the bulk chondrule compositions, particularly in IIA chondrules, show very high apparent DNa, indicating disequilibrium and suggesting that chondrule initial melts were more Na-rich than present chondrule bulk compositions. The apparent DNa values correlate with the Na concentrations of the olivine, but not with concentrations in the bulk melt. We use equilibrium DNa to find the Na content of the true parent liquid and estimate that Type IIA chondrules lost more than half their Na and recondensation was incomplete, whereas Type IIAB chondrules recovered most of theirs in their mesostases.Glass inclusions in olivine have lower Na than expected from fractionation of bulk composition liquids, and mesostases have higher Na than expected in calculated daughter liquids formed by fractional crystallization alone. These observations also require open system behavior of chondrules, specifically evaporation of Na before formation of melt inclusions followed by recondensation of Na in mesostases. Within this record of evaporation followed by recondensation, there is no indication of a stage with zero Na in the chondrules, which is predicted by models for shock wave cooling at canonical nebular pressures, suggesting high PT.The high Na concentrations in olivine and mesostases indicate very high PNa while chondrules were molten. This may be explained by local, very high particle densities where Type II chondrules formed. The high PT, PNa and number densities of chondrules implied suggest formation in debris clouds after protoplanetary collisions as an alternative to formation after passage of shock waves through large particle-rich clumps in the disk. Encounters of partially molten chondrules should have been frequent in these dense swarms. However, in many ordinary chondrites like Semarkona, “cluster chondrites”, compound chondrules are not abundant but instead chondrules aggregated into clusters. Chondrule melting, cooling and clustering in dense swarms contributed to rapid accretion, possibly after collision, by fallback on the grandparent body and by reaccretion as a new body downrange.  相似文献   
85.
To examine the iron (Fe) isotopic heterogeneities of CI and ordinary chondrites, we have analyzed several large chips (approximately 1 g) from three CI chondrites and three ordinary chondrites (LL5, L5, and H5). The Fe isotope compositions of five different samples of Orgueil, one from Ivuna and one from Alais (CI chondrites), are highly homogeneous. This new dataset provides a δ56Fe average of 0.02 ± 0.04‰ (2SE, n = 7), which represents the best available value for the Fe isotopic composition of CI chondrites and probably the best estimate of the bulk solar system. We conclude that the homogeneity of CI chondrites reflects the initial Fe isotopic homogeneity of the well‐mixed solar nebula. In contrast, larger (up to 0.26‰ in δ56Fe) isotopic variations have been found between separate approximately 1 g pieces of the same ordinary chondrite sample. The Fe isotope heterogeneities in ordinary chondrites appear to be controlled by the abundances of chondritic components, specifically chondrules, whose Fe isotope compositions have been fractionated by evaporation and recondensation during multiple heating events.  相似文献   
86.
Raman spectra were acquired on a series of natural and synthetic sulfide minerals, commonly found in enstatite meteorites: oldhamite (CaS), niningerite or keilite ((Mg,Fe)S), alabandite (MnS), troilite (FeS), and daubreelite (Cr2FeS4). Natural samples come from three enstatite chondrites, three aubrites, and one anomalous ungrouped enstatite meteorite. Synthetic samples range from pure endmembers (CaS, FeS, MgS) to complex solid solutions (Fe, Mg, Ca)S. The main Raman peaks are localized at 225, 285, 360, and 470 cm?1 for the Mg‐rich sulfides; at 185, 205, and 285 cm?1 for the Ca‐rich sulfides; at 250, 370, and 580 cm?1 for the Mn‐rich sulfides; at 255, 290, and 365 cm?1 for the Cr‐rich sulfides; and at 290 and 335 cm?1 for troilite with, occasionally, an extra peak at 240 cm?1. A peak at 160 cm?1 is present in all Raman spectra and cannot be used to discriminate between the different sulfide compositions. According to group theory, none of the cubic monosulfides oldhamite, niningerite, or alabandite should present first‐order Raman spectra because of their ideal rocksalt structure. The occurrence of broad Raman peaks is tentatively explained by local breaking of symmetry rules. Measurements compare well with the infrared frequencies calculated from first‐principles calculations. Raman spectra arise from activation of certain vibrational modes due to clustering in the solid solutions or to coupling with electronic transitions in semiconductor sulfides.  相似文献   
87.
Numerous periglacial features (polygons, nets, soil stripes, ice‐wedge pseudomorphs and sand‐wedge casts, involutions) have been recorded in France by examining bibliographical sources and aerial photographs. These data show that a large part of France was affected by permafrost during the Pleistocene and only the southern Aquitaine Basin and Languedoc seem to have been beyond its maximum extent. The first OSL ages obtained from the aeolian infill of wedge structures indicate that at least two phases of thermal contraction cracking occurred in southwestern France between ~25 and 36 ka. Chronostratigraphical data from loess in northern France indicate that these episodes correspond to the formation of ice‐wedge networks associated with tundra gleys. In the latter region, two additional permafrost episodes probably occurred during the Last Glacial, the older one corresponding to the end of Marine Isotope Stage (MIS) 4 around 60 ka and the more recent one to MIS 2 around 19–16 ka. Although stratigraphical data indicate that these episodes were relatively short (about one millennium), relict permafrost may have existed for longer periods in northern France.  相似文献   
88.
89.
90.
LA‐ICP‐MS is one of the most promising techniques for in situ analysis of geological and environmental samples. However, there are some limitations with respect to measurement accuracy, in particular for volatile and siderophile/chalcophile elements, when using non‐matrix‐matched calibration. We therefore investigated matrix‐related effects with a new 200 nm femtosecond (fs) laser ablation system (NWRFemto200) using reference materials with different matrices and spot sizes from 10 to 55 μm. We also performed similar experiments with two nanosecond (ns) lasers, a 193 nm excimer (ESI NWR 193) and a 213 nm Nd:YAG (NWR UP‐213) laser. The ion intensity of the 200 nm fs laser ablation was much lower than that of the 213 nm Nd:YAG laser, because the ablation rate was a factor of about 30 lower. Our experiments did not show significant matrix dependency with the 200 nm fs laser. Therefore, a non‐matrix‐matched calibration for the multi‐element analysis of quite different matrices could be performed. This is demonstrated with analytical results from twenty‐two international synthetic silicate glass, geological glass, mineral, phosphate and carbonate reference materials. Calibration was performed with the certified NIST SRM 610 glass, exclusively. Within overall analytical uncertainties, the 200 nm fs LA‐ICP‐MS data agreed with available reference values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号