首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   0篇
大气科学   5篇
地球物理   7篇
地质学   40篇
海洋学   10篇
天文学   16篇
自然地理   9篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1987年   1篇
  1974年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
21.
Izvestiya, Atmospheric and Oceanic Physics - Data on internal gravity and infrasound waves recorded during the passage of both warm and cold fronts throughout Moscow, which are associated with the...  相似文献   
22.
23.
24.
Genovesa Crater Lake is a remote, hypersaline lake in the northern Galápagos archipelago that contains a finely laminated sediment record. This sediment record has the potential to provide a high-resolution history of past climate variability in the eastern tropical Pacific. Here we present modern climate, lake, and sediment observations from 2009 to 2012 to explore how local climate variability influences Genovesa Crater Lake and its sediments. Surface lake temperature is strongly linked to air temperature and is highly seasonal. Temperature stratification is strongest during the warm season, whereas temperature becomes more uniform through the water column in the cool season. Deeper and earlier mixing occurred during the 2010 La Niña, which subsequently delayed 2011 cool season mixing and maximum warm season surface temperatures in 2011 and 2012. Lake salinity changes are influenced by precipitation, evaporation and persistent seawater influx. The largest declines in subsurface salinity follow months after the rainy season, when temperatures cool and fresher surface water from the previous warm/wet season mixes into the subsurface. Between 2009 and 2012, more calcium carbonate precipitated during a period of higher salinity. The period of highest calcium carbonate abundance measured in sediment records that span the late nineteenth to twentieth century coincides with the failure of two consecutive rainy seasons in 1988 and 1989 as well as the coldest monthly sea surface temperature measured at Puerto Ayora in 1989. More calcium carbonate-rich laminae from AD 1550 ± 70 to 1675 ± 90 may indicate a greater frequency of prolonged droughts or cooler temperatures, although enhanced productivity may also modulate carbonate precipitation. More Ca-rich laminae in Genovesa coincide with dry conditions inferred from other Galápagos sediment proxies, as well as prolonged dry and cool conditions inferred from reconstructions of the Southern Oscillation Index and NINO3 sea surface temperatures.  相似文献   
25.
The small recently infilled lake basin of Marcacocha (13°13′S, 72°12′W, 3355 m) in the Cuzco region of Peru has a morphology and location that renders it extremely sensitive to environmental change. A record of vegetation, human impact and climatic change during the past 4200 yr has been obtained from a highly organic core taken from the centre of the basin. Sustained arid episodes that affected the Peruvian Andes may be detectable using the proxy indicator of sedge (Cyperaceae) pollen abundances. As the lake‐level was lowered during sustained drier conditions, the local catchment was colonised by Cyperaceae, whereas during lake floods, they retreated or were submerged and pollen production was correspondingly reduced. Drier episodes during prehistoric times occurred around 900 bc , 500 bc , ad 100 and ad 550, with a longer dry episode occurring from ad 900 to 1800. Evidence from the independently derived Quelccaya ice‐core record and the archaeological chronology for the Cuzco region appears to support the climatic inferences derived from the sedge data. Many of these aridity episodes appear to correspond with important cultural changes in the Cuzco region and elsewhere in the Central Andes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
26.
Duvall  T. L.  Scherrer  P. H.  Bogart  R. S.  Bush  R. I.  De forest  C.  Hoeksema  J. T.  Schou  J.  Saba  J. L. R.  Tarbell  T. D.  Title  A. M.  Wolfson  C. J.  Milford  P. N. 《Solar physics》1997,170(1):63-73
In time-distance helioseismology, the travel time of acoustic waves is measured between various points on the solar surface. To some approximation, the waves can be considered to follow ray paths that depend only on a mean solar model, with the curvature of the ray paths being caused by the increasing sound speed with depth below the surface. The travel time is affected by various inhomogeneities along the ray path, including flows, temperature inhomogeneities, and magnetic fields. By measuring a large number of times between different locations and using an inversion method, it is possible to construct 3-dimensional maps of the subsurface inhomogeneities. The SOI/MDI experiment on SOHO has several unique capabilities for time-distance helioseismology. The great stability of the images observed without benefit of an intervening atmosphere is quite striking. It has made it possible for us to detect the travel time for separations of points as small as 2.4 Mm in the high-resolution mode of MDI (0.6 arc sec pixel-1). This has enabled the detection of the supergranulation flow. Coupled with the inversion technique, we can now study the 3-dimensional evolution of the flows near the solar surface.  相似文献   
27.
Expansion and contraction of desert margins around the globe have been inferred from a variety of proxy data and have since been linked, particularly in northern China and in the sub-Sahel, to changes in freshwater flux, vegetation cover, sea surface temperatures and, perhaps most importantly, monsoon circulations. We present a direct comparison of results from numerical general circulation model experiments for the mid-Holocene and for the Last Glacial Maximum (LGM) with the climatic conditions that have been inferred from loess–paleosol sequences taken from the Chinese Loess Plateau.During the mid-Holocene in northern China, the northwestward migration of the southeast desert margin that has been suggested by grain size analysis is also expressed in the model results. There is a statistically significant wetting of the Plateau region, and increased soil moisture is a consequence of an enhanced summer monsoon whose latent heat release deepens the cyclonic Tibetan low and brings increased low-level convergence and precipitation to the area. North of the desert region, this circulation dries the soil through enhanced atmospheric subsidence, although the northern margin of the desert does not migrate significantly.Expansion of the desert margin toward the southeast at the LGM is small, but there is a statistically significant drying of the Plateau. The local hydrological cycle is reduced, and there is an increase in large-scale atmospheric subsidence over the region that is caused by the presence of the Fennoscandian ice sheet upwind. Model results therefore suggest that, in addition to local micro- and mesoclimatic conditions, regional effects, such as monsoon circulations and distal orography, are also important factors in determining the location of desert margins.  相似文献   
28.
Quaternary glacial history of the Central Karakoram   总被引:3,自引:0,他引:3  
The Quaternary glacial history of the world's highest mountains, the Central Karakoram, is examined for the first time using geomorphic mapping of landforms and sediments, and 10Be terrestrial cosmogenic nuclide surface exposure dating of boulders on the moraines and glacially eroded surfaces. Four glacial stages are defined: the Bunthang glacial stage (>0.7 Ma); the Skardu glacial stage (marine Oxygen Isotope Stage [MIS] 6 or older); the Mungo glacial stage (MIS 2); and the Askole glacial stage (Holocene). Glaciers advanced several times during each glacial stage. These advances are not well defined for the oldest glacial stages, but during the Mungo and Askole glacial stages glacial advances likely occurred at 16, 11–13, 5 and 0.8 ka. The extent of glaciation in this region became increasingly more restricted over time. In the Braldu and Shigar valleys, glaciers advanced >150 km during the Bunthang and Skardu glacial stages, while glaciers advanced >80 km beyond their present positions during the Mungo glacial stage. In contrast, glaciers advanced a few kilometers from present ice margins during the Askole glacial stage. Glacier in this region likely respond in a complex fashion to the same forcing that causes changes in Northern Hemisphere oceans and ice sheets, teleconnected via the mid-latitude westerlies, and also to changes in monsoonal intensity.  相似文献   
29.
A critical issue in research concerning long-term climate change is the relationship between circulation features and global temperature variations. We establish that the annual areal size of the northern hemisphere subtropical high pressure belt (SHPB), as defined by seven 500-hPa height isohypses, shares over 70% of the variability with global annual near-surface air temperature since 1948. The area enclosed by the 5850-m isohypse of the 500-hPa surface in the northern hemisphere has more than doubled since the 1950s, with greatest increases over northern Africa, the Middle East and India. A long-term historical run of a coupled global climate model shows rapidly increasing SHPB annual sizes, since the mid-1970s. Since the SHPB’s descending air produces increased aridity, SHPB expansion may transition humid regions to more arid lands. To examine this aspect, first, variations in recorded precipitation using a gridded database for the region experiencing expansion of the SHPB show a decrease in precipitation (though significant only at the 88% confidence level) over the last 60?years. Second, variations in a 0.5° spatial resolution monthly drought index, the Standardized Precipitation Evapotranspiration Index, are highly correlated (+0.78) with annual variations in the area enclosed by the 500-hPa height isohypses. These results support those of previous investigations that suggest further northward expansion of the northern hemisphere subtropical dry zones with continued global climate change.  相似文献   
30.
We present the temperature dependence of the specific heat of CoCr2O4 between 2.08 K and 306 K in zero magnetic field. The lattice component can be described by the Komada–Westrum model with a characteristic temperature ΘKW = 541 K. The entropy of the magnetic component amounts to 33.51 J mol?1 K?1 at T = 298.15 K, in good agreement with the magnetic entropy of Co2+ and Cr3+ ions with completely quenched orbital moments. We compare our results with data available in literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号