首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98678篇
  免费   1438篇
  国内免费   1068篇
测绘学   2594篇
大气科学   7278篇
地球物理   18646篇
地质学   36967篇
海洋学   8632篇
天文学   21660篇
综合类   393篇
自然地理   5014篇
  2022年   434篇
  2021年   764篇
  2020年   863篇
  2019年   916篇
  2018年   4178篇
  2017年   3923篇
  2016年   3642篇
  2015年   1526篇
  2014年   2355篇
  2013年   4348篇
  2012年   3390篇
  2011年   5502篇
  2010年   4847篇
  2009年   5852篇
  2008年   4948篇
  2007年   5510篇
  2006年   3226篇
  2005年   2954篇
  2004年   2766篇
  2003年   2717篇
  2002年   2492篇
  2001年   2041篇
  2000年   1955篇
  1999年   1688篇
  1998年   1649篇
  1997年   1592篇
  1996年   1394篇
  1995年   1290篇
  1994年   1131篇
  1993年   1035篇
  1992年   1012篇
  1991年   985篇
  1990年   1001篇
  1989年   846篇
  1988年   845篇
  1987年   903篇
  1986年   845篇
  1985年   1048篇
  1984年   1168篇
  1983年   1052篇
  1982年   1006篇
  1981年   909篇
  1980年   860篇
  1979年   819篇
  1978年   810篇
  1977年   689篇
  1976年   635篇
  1975年   645篇
  1974年   599篇
  1973年   637篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Man Hoi Lee  S.J. Peale 《Icarus》2006,184(2):573-583
Two small satellites of Pluto, S/2005 P1 (hereafter P1) and S/2005 P2 (hereafter P2), have recently been discovered outside the orbit of Charon, and their orbits are nearly circular and nearly coplanar with that of Charon. Because the mass ratio of Charon-Pluto is ∼0.1, the orbits of P2 and P1 are significantly non-Keplerian even if P2 and P1 have negligible masses. We present an analytic theory, with P2 and P1 treated as test particles, which shows that the motion can be represented by the superposition of the circular motion of a guiding center, the forced oscillations due to the non-axisymmetric components of the potential rotating at the mean motion of Pluto-Charon, the epicyclic motion, and the vertical motion. The analytic theory shows that the azimuthal periods of P2 and P1 are shorter than the Keplerian orbital periods, and this deviation from Kepler's third law is already detected in the unperturbed Keplerian fit of Buie and coworkers. In this analytic theory, the periapse and ascending node of each of the small satellites precess at nearly equal rates in opposite directions. From direct numerical orbit integrations, we show the increasing influence of the proximity of P2 and P1 to the 3:2 mean-motion commensurability on their orbital motion as their masses increase within the ranges allowed by the albedo uncertainties. If the geometric albedos of P2 and P1 are high and of order of that of Charon, the masses of P2 and P1 are sufficiently low that their orbits are well described by the analytic theory. The variation in the orbital radius of P2 due to the forced oscillations is comparable in magnitude to that due to the best-fit Keplerian eccentricity, and there is at present no evidence that P2 has any significant epicyclic eccentricity. However, the orbit of P1 has a significant epicyclic eccentricity, and the prograde precession of its longitude of periapse with a period of 5300 days should be easily detectable. If the albedos of P2 and P1 are as low as that of comets, the large inferred masses induce significant short-term variations in the epicyclic eccentricities and/or periapse longitudes on the 400-500-day timescales due to the proximity to the 3:2 commensurability. In fact, for the maximum inferred masses, P2 and P1 may be in the 3:2 mean-motion resonance, with the resonance variable involving the periapse longitude of P1 librating. Observations that sample the orbits of P2 and P1 well on the 400-500-day timescales should provide strong constraints on the masses of P2 and P1 in the near future.  相似文献   
62.
OSIRIS (OH-Suppressing Infra-Red Integral-field Spectrograph) is a new facility instrument for the Keck Observatory. After seeing first light in February 2005, OSIRIS is currently undergoing commissioning. OSIRIS provides the capability of performing three-dimensional spectroscopy in the near-infrared z, J, H, and K bands at the resolution limit of the Keck II telescope, which is equipped with adaptive optics and a laser guide star. The science case for OSIRIS is summarized, and the instrument and associated data reduction software are described.  相似文献   
63.
64.
S.J Weidenschilling 《Icarus》2003,165(2):438-442
For standard cosmic abundances of heavy elements, a layer of small particles in the central plane of the solar nebula cannot attain the critical density for gravitational instability. Youdin and Shu (2002, Astrophys. J. 580, 494-505) suggest that the local surface density of solids can be enhanced by radial migration of particles due to gas drag. However, they consider only motions of individual particles. Collective motion due to turbulent stress on the particle layer acts to inhibit such enhancement and may prevent gravitational instability.  相似文献   
65.
A flood of reliable seismic data will soon arrive. The migration to largertelescopes on the ground may free up 4-m class instruments for multi-sitecampaigns, and several forthcoming satellite missions promise to yieldnearly uninterrupted long-term coverage of many pulsating stars. We willthen face the challenge of determining the fundamental properties of thesestars from the data, by trying to match them with the output of ourcomputer models. The traditional approach to this task is to make informedguesses for each of the model parameters, and then adjust them iterativelyuntil an adequate match is found. The trouble is: how do we know that oursolution is unique, or that some other combination of parameters will notdo even better? Computers are now sufficiently powerful and inexpensivethat we can produce large grids of models and simply compare all ofthem to the observations. The question then becomes: what range ofparameters do we want to consider, and how many models do we want tocalculate? This can minimize the subjective nature of the process, but itmay not be the most efficient approach and it may give us a false sense ofsecurity that the final result is correct, when it is really justoptimal. I discuss these issues in the context of recent advances inthe asteroseismological analysis of white dwarf stars.  相似文献   
66.
This paper describes a wide-field survey made at 34.5 MHz using GEETEE,1 the low frequency telescope at Gauribidanur (latitude 13°36′12′′N). This telescope was used in the transit mode and by per forming 1-D synthesis along the north-south direction the entire observable sky was mapped in a single day. This minimized the problems that hinder wide-field low-frequency mapping. This survey covers the declination range of-50° to + 70° (- 33° to +61° without aliasing) and the complete 24 hours of right ascension. The synthesized beam has a resolution of 26′ x 42′ sec (δ- 14°. 1). The sensitivity of the survey is 5 Jy/beam (1σ). Special care has been taken to ensure that the antenna responds to all angular scale structures and is suitable for studies of both point sources and extended objects This telescope is jointly operated by the Indian Institute of Astrophysics, Bangalore and the Roman Research Institute, Bangalore.  相似文献   
67.
Photographic spectra of SN1987A in the LMC have been obtained from 1987 February 25 to 1988 June 30. Microdensitometer tracings of these have been reduced to intensity and corrections for instrumental response have been applied to the spectra. This paper presents these data in an atlas format, discusses the reduction procedures in detail, and presents radial velocity measurements of selected lines in the spectra  相似文献   
68.
An introduction to Maslov's asymptotic method   总被引:3,自引:0,他引:3  
Summary. Familiar concepts such as asymptotic ray theory and geometrical spreading are now recognized as an asymptotic form of a more general asymptotic solution to the non-separable wave equation. In seismology, the name Maslov asymptotic theory has been attached to this solution. In its simplest form, it may be thought of as a justification of disc-ray theory and it can be reduced to the WKBJ seismogram. It is a uniformly valid asymptotic solution, though. The method involves properties of the wavefronts and ray paths of the wave equation which have been established for over a century. The integral operators which build on these properties have been investigated only comparatively recently. These operators are introduced very simply by appealing to the asymptotic Fourier transform of Ziolkowski & Deschamps. This leads quite naturally to the result that phase functions in different domains of the spatial Fourier transform are related by a Legendre transformation. The amplitude transformation can also be inferred by this method. Liouville's theorem (the incompressibility of a phase space of position and slowness) ensures that it is always possible to obtain a uniformly asymptotic solution. This theorem can be derived by methods familiar to seismologists and which do not rely on the traditional formalism of classical mechanics. It can also be derived from the sympletic property of the equations of geometrical spreading and canonical transformations in general. The symplectic property plays a central role in the theory of high-frequency beams in inhomogeneous media.  相似文献   
69.
Byurakan Astrophysical Observatory. Translated from Astrofizika, Vol. 33, No. 2, pp. 271–281, September–October, 1990.  相似文献   
70.
In this paper we analyse error-removing techniques used without sufficient theoretical support in a previous paper, where Chandrasekhar's higher-order perturbation theories were developed for either uniformly or differentially-rotating polytropic stars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号