首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1975篇
  免费   77篇
  国内免费   20篇
测绘学   45篇
大气科学   142篇
地球物理   569篇
地质学   685篇
海洋学   177篇
天文学   294篇
综合类   6篇
自然地理   154篇
  2021年   20篇
  2020年   27篇
  2019年   32篇
  2018年   45篇
  2017年   38篇
  2016年   61篇
  2015年   43篇
  2014年   48篇
  2013年   95篇
  2012年   54篇
  2011年   68篇
  2010年   84篇
  2009年   86篇
  2008年   79篇
  2007年   90篇
  2006年   68篇
  2005年   62篇
  2004年   56篇
  2003年   62篇
  2002年   55篇
  2001年   28篇
  2000年   34篇
  1999年   33篇
  1998年   31篇
  1997年   31篇
  1996年   32篇
  1995年   33篇
  1994年   34篇
  1993年   21篇
  1992年   32篇
  1991年   32篇
  1990年   41篇
  1989年   26篇
  1988年   22篇
  1987年   20篇
  1986年   22篇
  1985年   37篇
  1984年   40篇
  1983年   36篇
  1982年   21篇
  1981年   35篇
  1980年   27篇
  1979年   27篇
  1978年   32篇
  1977年   18篇
  1976年   14篇
  1975年   12篇
  1974年   20篇
  1973年   24篇
  1970年   11篇
排序方式: 共有2072条查询结果,搜索用时 31 毫秒
51.
The mid-Holocene (ca. 8000-4000 cal yr BP) was a time of marked aridity throughout much of Minnesota, and the changes due to mid-Holocene aridity are seen as an analog for future responses to global warming. In this study, we compare the transition into (ca. 9000-7000 yr ago) and out of (ca. 5000-2500 yr ago) the mid-Holocene (MH) period at Kimble Pond and Sharkey Lake, located along the prairie forest ecotone in south-central Minnesota, using high resolution (∼ 5-36 yr) sampling of pollen, charcoal, sediment magnetic and loss-on-ignition properties. Changes in vegetation were asymmetrical with increasing aridity being marked by a pronounced shift from woodland/forest-dominated landscape to a more open mix of grassland and woodland/savanna. In contrast, at the end of the MH, grassland remained an important component of the landscape despite increasing effective moisture, and high charcoal influxes (median 2.7-4.0 vs. 0.6-1.7 mm2 cm− 2 yr− 1 at start of MH) suggest the role of fire in limiting woodland expansion. Asymmetric vegetation responses, variation among and within proxies, and the near-absence of fire today suggest caution in using changes associated with mid-Holocene aridity at the prairie forest boundary as an analog for future responses to global warming.  相似文献   
52.
In order to reduce the brittleness of soil stabilized by lime only, a recent study of a newly proposed mixture of polypropylene fibre and lime for ground improvement is described and reported in the paper. To investigate and understand the influence of the mixture of polypropylene fibre and lime on the engineering properties of a clayey soil, nine groups of treated soil specimens were prepared and tested at three different percentages of fibre content (i.e. 0.05%, 0.15%, 0.25% by weight of the parent soil) and three different percentages of lime (i.e. 2%, 5%, 8% by weight of the parent soil). These treated specimens were subjected to unconfined compression, direct shear, swelling and shrinkage tests. Through scanning electron microscopy (SEM) analysis of the specimens after shearing, the improving mechanisms of polypropylene fibre and lime in the soil were discussed and the observed test results were explained. It was found that fibre content, lime content and curing duration had significant influence on the engineering properties of the fibre–lime treated soil. An increase in lime content resulted in an initial increase followed by a slight decrease in unconfined compressive strength, cohesion and angle of internal friction of the clayey soil. On the other hand, an increase in lime content led to a reduction of swelling and shrinkage potential. However, an increase in fibre content caused an increase in strength and shrinkage potential but brought on the reduction of swelling potential. An increase in curing duration improved the unconfined compressive strength and shear strength parameters of the stabilized soil significantly. Based on the SEM analysis, it was found that the presence of fibre contributed to physical interaction between fibre and soil whereas the use of lime produced chemical reaction between lime and soil and changed soil fabric significantly.  相似文献   
53.
There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt “wets” sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. in Earth Planet Sci Lett 79:33–45, 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ∼ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: (1) advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); (2) silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus “sampling” Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent “de-coupling” of these systems.  相似文献   
54.
55.
56.
A tandem deployment system was used to critically evaluate relationships between important water chemistry parameters (pH, salinity, dissolved oxygen) and biotic performance based on clam growth. The effects of environmental conditions on growth of juvenile clams,Mercenaria mercenaria, were determined after 7-day field deployments in cages at reference sites from 1998 to 2000. Continuous measurements of the overlying water chemistry parameters were monitored by deploying an in situ water quality instrument (Hydrolab Datasonde) at the same time. While salinity was identified as an important determinant of clam growth over wide salinity ranges (10–35‰), pH was also found to be a very important parameter, especially in low-salinity regimes (<25‰). Average pH measurements ranged from 7.2 to 7.8; minimal pHs ranged from 6.9 to 7.6. The results indicated that when average pH levels fell below 7.5 or minimum pH levels fell below 7.2, growth rates were <50% that of clams deployed under higher pH conditions. Estuarine systems are generally perceived as being well-buffered so pH is frequently assumed to be unimportant, but our results suggest that pH levels can decline in estuarine systems to levels that can adversely affect biological responses. The potential impacts on biological resources of even moderate decreases in pH, particularly in systems that naturally tend to have lower pH conditions, may be more important than previously realized.  相似文献   
57.
58.
Combining a geological model with a geomechanical model, it generally turns out that the geomechanical model is built from units that are at least a 100 times larger in volume than the units of the geological model. To counter this mismatch in scales, the geological data model's heterogeneous fine-scale Young's moduli and Poisson's ratios have to be “upscaled” to one “equivalent homogeneous” coarse-scale rigidity. This coarse-scale rigidity relates the volume-averaged displacement, strain, stress, and energy to each other, in such a way that the equilibrium equation, Hooke's law, and the energy equation preserve their fine-scale form on the coarse scale. Under the simplifying assumption of spatial periodicity of the heterogeneous fine-scale rigidity, homogenization theory can be applied. However, even then the spatial variability is generally so complex that exact solutions cannot be found. Therefore, numerical approximation methods have to be applied. Here the node-based finite element method for the displacement as primary variable has been used. Three numerical examples showing the upper bound character of this finite element method are presented.  相似文献   
59.
60.
Benthic foraminiferal oxygen and carbon isotopic records from Southern Ocean sediment cores show that during the last glacial period, the South Atlantic sector of the deep Southern Ocean filled to roughly 2500 m with water uniformly low in δ13C, resulting in the appearance of a strong mid-depth nutricline similar to those observed in glacial northern oceans. Concomitantly, deep water isotopic gradients developed between the Pacific and Atlantic sectors of the Southern Ocean; the δ13C of benthic foraminifera in Pacific sediments remained significantly higher than those in the Atlantic during the glacial episode. These two observations help to define the extent of what has become known as the ‘Southern Ocean low δ13C problem’. One explanation for this glacial distribution of δ13C calls upon surface productivity overprints or changes in the microhabitat of benthic foraminifera to lower glacial age δ13C values. We show here, however, that glacial-interglacial δ13C shifts are similarly large everywhere in the deep South Atlantic, regardless of productivity regime or sedimentary environment. Furthermore, the degree of isotopic decoupling between the Atlantic and Pacific basins is proportional to the magnitude of δ13C change in the Atlantic on all time scales. Thus, we conclude that the profoundly altered distribution of δ13C in the glacial Southern Ocean is most likely the result of deep ocean circulation changes. While the characteristics of the Southern Ocean δ13C records clearly point to reduced North Atlantic Deep Water input during glacial periods, the basinal differences suggest that the mode of Southern Ocean deep water formation must have been altered as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号