首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   12篇
地质学   7篇
天文学   10篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2016年   2篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
11.
ABSTRACT

The applicability of multivariate interpolation and information entropy to optimize the raingauge network in the Mekong River Basin (MRB) is investigated. Three different spatial interpolation methods are tested: inverse distance squared (IDS), ordinary kriging (OK) and gradient plus inverse distance squared (GIDS). The validated results confirm that the GIDS method outperformed IDS and OK. The application of information entropy together with GIDS on a network of 57 gauges provided the same information content (7.34 nat) as could be obtained using all 6788 gauges in the MRB. Combining this result with meteorological and hydrological indicators revealed that the number of gauges for the optimum raingauge network could be reduced to 40. The results imply good applicability of the proposed method, which may be used to help prioritize efforts and funds to maintain the raingauge network in a given river basin.  相似文献   
12.
We derived explicit expressions in the time domain for 3-D quasi-static strain and stress fields, due to a point moment tensor source in an elastic surface layer overlying viscoelastic half-space under gravity. The expressions of strain in the elastic surface layer were directly obtained from the expressions of displacement in our previous paper. The conversion of strain into stress is easy, because the stress–strain relation of elastic material is linear. In the viscoelastic substratum, the expressions of strain were obtained by applying the correspondence principle of linear viscoelasticity to the associated elastic solution. The strain–stress conversion is not straightforward, as the stress–strain relation of viscoelastic material is usually given in a differential form. To convert strain into stress, we used an integral form of the stress–strain relation instead of the usual differential form. The expressions give the responses of elastic half-space at \( t = 0 \) , and the responses of an elastic plate floating on non-viscous liquid at \( t = \infty \) . The moment tensor is rationally decomposed into the three independent force systems, corresponding to isotropic expansion, shear faulting and crack opening, and so the expressions include the strain and stress fields for these force systems as special cases. As the first numerical example, we computed the temporal changes in strain and stress fields after the sudden opening of an infinitely long vertical crack cutting the elastic surface layer. Here, we observe that the stress changes caused by the sudden crack opening gradually decay with time and vanish at \( t = \infty \) everywhere. After the completion of stress relaxation, a characteristic pattern of shear strain remains in the viscoelastic substratum. Since the strain and stress fields at \( t = \infty \) can be read as the strain- and stress-rate fields caused by steady crack opening, respectively, this numerical example demonstrates the realization of a steady stress state supported by steady viscous flow in the asthenosphere, associated with steady seafloor spreading at mid-ocean ridges. For the second numerical example, we computed the temporal changes in strain and stress fields after the 2011 Tohoku-oki mega-thrust earthquake, which occurred at the North American-Pacific plate interface. In this numerical example, the stress changes caused by coseismic fault slip vanish at \( t = \infty \) in the viscoelastic substratum, but remain in the elastic surface layer. The coseismic stress changes (and also strain changes) in the elastic surface layer diffuse away from the source region with time, due to gradual stress relaxation in the viscoelastic substratum.  相似文献   
13.
Chihiro Tao  Sarah V. Badman 《Icarus》2011,213(2):581-592
Planetary aurora display the dynamic behavior of the plasma gas surrounding a planet. The outer planetary aurora are most often observed in the ultraviolet (UV) and the infrared (IR) wavelengths. How the emissions in these different wavelengths are connected with the background physical conditions are not yet well understood. Here we investigate the sensitivity of UV and IR emissions to the incident precipitating auroral electrons and the background atmospheric temperature, and compare the results obtained for Jupiter and Saturn. We develop a model which estimates UV and IR emission rates accounting for UV absorption by hydrocarbons, ion chemistry, and non-LTE effects. Parameterization equations are applied to estimate the ionization and excitation profiles in the H2 atmosphere caused by auroral electron precipitation. The dependences of UV and IR emissions on electron flux are found to be similar at Jupiter and Saturn. However, the dependences of the emissions on electron energy are different at the two planets, especially for low energy (<10 keV) electrons; the UV and IR emissions both decrease with decreasing electron energy, but this effect in the IR is less at Saturn than at Jupiter. The temperature sensitivity of the IR emission is also greater at Saturn than at Jupiter. These dependences are interpreted as results of non-LTE effects on the atmospheric temperature and density profiles. The different dependences of the UV and IR emissions on temperature and electron energy at Saturn may explain the different appearance of polar emissions observed at UV and IR wavelengths, and the differences from those observed at Jupiter. These results lead to the prediction that the differences between the IR and UV aurora at Saturn may be more significant than those at Jupiter. We consider in particular the occurrence of bright polar infrared emissions at Saturn and quantitatively estimate the conditions for such IR-only emissions to appear.  相似文献   
14.
15.
Y. Kimura  K. Tamura  H. Chihara  C. Kaito 《Icarus》2005,177(1):280-285
A new method of producing pyrrhotite grains, which are most commonly found in cometary material and interplanetary dust particles, was developed. Pyrrhotite grains in the monophase having a 7C structure were predominately produced using a solid-solid reaction between iron and sulfur grains at room temperature. The characteristic infrared peaks were observed at 602, 563, and 397 cm−1 (16.6, 17.8, and 25.2 μm).  相似文献   
16.
Large, shallow‐water lakes located on floodplains play an important role in creating highly productive ecosystems and are prone to high concentrations of suspended solids due to sediment resuspension. In this study, the aim was to determine the dominant processes governing the total suspended solid (TSS) concentration at the water surface in Tonle Sap Lake, Cambodia, which is a large, shallow‐water lake. Satellite remotely sensed daily reflectance data from 2003 to 2017 were used. Seasonal changes in TSS concentration indicated that bottom sediment resuspension during dry seasons was mostly caused by wind and the TSS concentration was closely correlated with the water depth of the lake. The TSS concentration during flood periods was controlled by both wind and inflow currents from the Tonle Sap River. Additionally, we confirmed that surface/subsurface flow with a low TSS concentration from forests on the floodplain lowered the TSS concentration year round, except during August and September. This fact implied that the floodplain forest area decrease may increase the lake TSS concentration. An analysis of the long‐term changes in TSS indicated that a decrease in the water level during flood periods resulted in the high TSS concentrations observed during the subsequent dry periods. Therefore, climate change and water resource development, which are likely to cause water level reductions in the Mekong River during flood periods, may increase the TSS concentration in Tonle Sap Lake, particularly during the dry season.  相似文献   
17.
We developed a new numerical model of the Jovian magnetosphere-ionosphere coupling current system in order to investigate the effects of diurnal variation of ionospheric conductance. The conductance is determined by ion chemical processes that include the generation of hydrogen and hydrocarbon ions by solar EUV radiation and auroral electrons precipitation. The model solves the torque equations for magnetospheric plasma accelerated by the radial currents flowing along the magnetospheric equator. The conductance and magnetospheric plasma then change the field-aligned currents (FACs) and the intensity of the electric field projected onto the ionosphere. Because of the positive feedback of the ionospheric conductance on the FAC, the FAC is the maximum on the dayside and minimum just before sunrise. The power transferred from the planetary rotation is mainly consumed in the upper atmosphere on the dayside, while it is used for magnetospheric plasma acceleration in other local time (LT) sectors. Further, our simulations show that the magnetospheric plasma density and mass flux affect the temporal variation in the peak FAC density. The enhancement of the solar EUV flux by a factor of 2.4 increases the FAC density by 30%. The maximum density of the FAC is determined not only by the relationship between the precipitating electron flux and ionospheric conductance, but also by the system inertia, i.e., the inertia of the magnetospheric plasma. A theoretical analysis and numerical simulations reveal that the FAC density is in proportion to the planetary angular velocity on the dayside and to the square of the planetary angular velocity on the nightside. When the radial current at the outer boundary is fixed at values above 30 MA, as assumed in previous model studies, the peak FAC density determined at latitude 73°-74° is larger than the diurnal variable component. This result suggests large effects of this assumed radial current at the outer boundary on the system.  相似文献   
18.
— We developed a 3-D simulation model for long-term crustal deformation due to steady plate subduction in and around Japan by incorporating viscoelastic slip-response functions into a realistic 3-D plate interface model, constructed on the basis of the topography of ocean floors and hypocenter distributions of earthquakes. The lithosphere-asthenosphere system is modelled by an elastic surface layer overlying a Maxwellian viscoelastic half-space. Kinematic interaction at plate interfaces is rationally represented by the increase of tangential displacement discontinuity (fault slip) across the interfaces. With this model, giving the steady slip rates at plate interfaces calculated from NUVEL-1A, we simulated long-term crustal deformation due to steady plate subduction in and around Japan. The simulated crustal deformation pattern is characterized by steep uplift at island arcs, sharp subsidence at ocean trenches and gentle uplift at outer rises. The numerical results show the strong dependence of the deformation pattern on the 3-D geometry of plate interfaces.  相似文献   
19.
This work assessed both the fractionation and the seasonal mobility variations of Ga and In in systems impacted by acidic thermal waters. This was accomplished by performing thermodynamic calculations using the PHREEQC algorithm and by assessing the activity of acidophilic iron-oxidizing bacteria. The pH of the Kusatsu thermal waters in Gunma Prefecture, central Japan, is rapidly increased following the addition of a lime suspension. After an abrupt pH increase, under which conditions free ions of Ga and In and their complexes with Cl? and SO42? exist only in negligible quantities, the majority of dissolved Ga and In is removed by sorption onto suspended hydrous ferric oxides (HFOs). These HFOs are then transported to an artificial lake without significant sedimentation along the river. Subsequently, the suspended HFOs settle out and are added to sediments without significant fractionation between Ga and In. The Tamagawa thermal waters in Akita Prefecture, northeast Japan, are also treated with lime. However, complete neutralization requires mixing with some tributary streams, leading to a gradual downstream increase in pH. Dissolved Ga is, in general, sorbed by HFOs in upstream areas, leading to wide dispersal of Ga across the entire watershed. In comparison, In is transported to the lake inlet predominantly as a Cl? complex species without significant removal along the river, with the majority being precipitated in an artificial lake, where Cl? concentrations are too low to form stable complex species with In, and thus, dissolved In is sorbed by HFOs. As a result, In is effectively concentrated within downstream lakebed sediments, whereas Ga is dispersed along the river. Seasonal variations in Ga mobility within the Tamagawa field between snowmelt and low-flow seasons are primarily controlled by pH, because hydrolysis reactions of these metals, which are related to sorption reactions, tend to occur in the upstream regions in the snowmelt season. However, under warmer conditions, HFO formation preferably occurs due to the activity of acidophilic iron-oxidizing bacteria. Thus, under similar pH variations, dissolved Ga is more effectively removed by HFOs during warmer seasons. On the contrary, because HFOs are abundantly formed in low-flow season, even under colder conditions, before In hydrolysis reaction starts to occur, In mobility is less affected by water temperature and then bacterial activity.  相似文献   
20.
The Nile Delta aquifer has deteriorated in the quality of the groundwater due to domestic, agricultural and industrial activities. In order to examine this, a dataset of thirty-one shallow groundwater samples and four surface water samples were collected in May 2014. The objective of our study is to investigate the hydrochemical characteristics of the groundwater at El-Khanka region in El-Qalubia governorate, southern Nile Delta to discuss the possibility of groundwater use for agricultural purpose. Groundwater types were defined, and the suitability for use in irrigation was evaluated. The factor analysis was conducted to investigate the relationship between the thirteen variables for exploring the loading of them in the model. Then, the principal component analysis was performed to identify the linear combination of variables that account for the greatest amount of common variance. Results showed that groundwater samples are mainly alkaline with an average pH value of 8.60. The total dissolved solids (TDS) range from 350 to 1456 mg/L. The highest concentrations of the anions and cations are sulfate (\(\rm{SO}_4^{2-}\)) and sodium (Na+) respectively. The residual sodium carbonate (RSC) is less than 1.25 meq/L. Also, all groundwater samples are located in good and permissible salinity with TDS < 1500 mg/L. In addition, all samples are located in the low sodium hazard zone where sodium adsorption ratio (SAR) is less than 10. Therefore, it is concluded that, the groundwater is suitable for irrigation use in El-Qalubia Governorate. Four factors with Eigenvalues above 1.0 which correlated to each other contributed to the model with 81% of the total variance and governed the spatial variability of the aquifer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号