首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   6篇
地球物理   6篇
地质学   9篇
海洋学   2篇
天文学   15篇
自然地理   2篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2013年   4篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
21.
We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5–9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today.  相似文献   
22.
Past hydrological interactions between the Mediterranean Sea and Black Sea are poorly resolved due to complications in establishing a high‐resolution time frame for the Black Sea. We present a new greigite‐based magnetostratigraphic age model for the Mio‐Pliocene deposits of DSDP Hole 380/380A, drilled in the southwestern Black Sea. This age model is complemented by 40Ar/39Ar dating of a volcanic ash layer, allowing a direct correlation of Black Sea deposits to the Messinian salinity crisis (MSC) interval of the Mediterranean Sea. Proxy records divide these DSDP deposits into four intervals: (i) Pre‐MSC marine conditions (6.1–6.0 Ma); (ii) highstand, fresh to brackish water conditions (~6.0–5.6 Ma); (iii) lowstand, fresh‐water environment (5.6–5.4 Ma) and (iv) highstand, fresh‐water conditions (5.4–post 5.0 Ma). Our results indicate the Black Sea was a major fresh‐water source during gypsum precipitation in the Mediterranean Sea. The introduction of Lago Mare fauna during the final stage of the MSC coincides with a sea‐level rise in the Black Sea. Across the Mio‐Pliocene boundary, sea‐level and salinity in the Black Sea did not change significantly.  相似文献   
23.
Oligocene–Miocene chronostratigraphic correlations within the Paratethys domain are still highly controversial. This study focuses on the late Early Miocene of the Swiss and S-German Molasse Basin (Late Burdigalian, Ottnangian–Karpatian). Previous studies have published different chronologies for this time interval that is represented by the biostratigraphically well constrained Upper Marine Molasse (OMM, lower and middle Ottnangian), Upper Brackish Molasse (OBM, Grimmelfingen and Kirchberg Formations, middle and upper Ottnangian to lower Karpatian, MN 4a–MN 4b) and Upper Freshwater Molasse (OSM, Karpatian–Badenian, MN 5). Here, we suggest a new chronostratigraphic framework, based on integrated magneto-litho-biostratigraphic studies on four sections and three boreholes. Our data indicate that the OBM comprises chrons 5D.1r and 5Dn (Grimmelfingen Fm), chron 5Cr (lower Kirchberg Fm) and the oldest part of chron 5Cn.3n (upper Kirchberg Fm). The OSM begins during chron 5Cn.3n, continues through 5Cn, and includes a long reversed segment that can be correlated to chron 5Br. The OMM-OSM transition was completed at 16.0 Ma in the Swiss Molasse Basin, while the OBM-OSM changeover ended at 16.6 Ma in the S-German Molasse Basin. As the lower Kirchberg Fm represents a facies of the Ottnangian, our data suggest that the Ottnangian–Karpatian boundary in the Molasse Basin is approximately at 16.8 Ma, close to the 5Cr–5Cn.3n magnetic reversal, and thus 0.4 Myr younger than the inferred age of 17.2 Ma used in recent Paratethys time scales. Notably, this would not be problematic for the Paratethys stratigraphy, because chron 5Cr is mainly represented by a sedimentation gap in the Central Paratethys. We also realise, however, that additional data is still required to definitely solve the age debate concerning this intriguing time interval in the North Alpine Foreland Basin. We dedicate this work to our dear friend and colleague Jean-Pierre Berger (8 July 1956–18 January 2012).  相似文献   
24.
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.  相似文献   
25.
A late Quaternary diatom stratigraphy of Lago Puyehue (40°40′ S, 72°28′ W) was examined in order to infer past limnological and climatic changes in the South-Chilean Lake District. The diatom assemblages were well preserved in a 1,122 cm long, 14C-dated sediment core spanning the last 17,900 years, and were in support of an early deglaciation of Lago Puyehue. The presence of a short cold spell in South Chile, equivalent to the Younger Dryas event in the Northern Hemisphere, the Antarctic Cold Reversal in Antarctica, or the Huelmo-Mascardi event in southern South America, was not clearly evidenced in the diatom data, although some climate instability may have occurred between 13,400 and 11,700 cal. yr. BP, and a relatively long period (between 16,850 and 12,810 cal. yr. BP) with low absolute abundances and biovolumes could be tentatively interpreted as a period of low rainfall and/or temperatures. An increase in the moisture supply to the lake was tentatively inferred at 12,810 cal. yr. BP. After 9,550 cal. yr. BP, inferred stronger and longer persisting summer stratification, may have been the result of the higher temperatures associated with an early-Holocene thermal optimum. The mid-Holocene appeared to be characterized by a decrease in precipitation, culminating around 5,000 cal. yr. BP, and rising again after 3,000 cal. yr. BP, likely associated with a previously documented lowered frequency and amplitude of El Niño events. An increase in precipitation during the late Holocene (3,000 cal. yr. BP–present) might have marked subsequent increased frequency of El Niño occurrences, leading to drier summers and slightly moister winters in the area.  相似文献   
26.
This paper focuses on one particular type of telescope – the heliometer – designed for solving one specific basic problem in astronomy: the scale factor of the solar system. One very special instrument of this type was the “heliometer with unequal focal lengths” designed by the Belgian astronomer Jean‐Charles Houzeau for the 1882 transit of Venus. We also draw attention to the most interesting personality of Houzeau, and to his social engagement that went much beyond his work as a scientist (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
27.
28.
29.
Our understanding of the continental climate development in East Asia is mainly based on loess–paleosol sequences and summer monsoon precipitation reconstructions based on oxygen isotopes (δ18O) of stalagmites from several Chinese caves. Based on these records, it is thought that East Asian Summer Monsoon (EASM) precipitation generally follows Northern Hemisphere (NH) summer insolation. However, not much is known about the magnitude and timing of deglacial warming on the East Asian continent. In this study we reconstruct continental air temperatures for central China covering the last 34,000 yr, based on the distribution of fossil branched tetraether membrane lipids of soil bacteria in a loess–paleosol sequence from the Mangshan loess plateau. The results indicate that air temperature varied in phase with NH summer insolation, and that the onset of deglacial warming at ~ 19 kyr BP is parallel in timing with other continental records from e.g. Antarctica, southern Africa and South-America. The air temperature increased from ~ 15 °C at the onset of the warming to a maximum of ~ 27 °C in the early Holocene (~ 12 kyr BP), in agreement with the temperature increase inferred from e.g. pollen and phytolith data, and permafrost limits in central China.Comparison of the tetraether membrane lipid-derived temperature record with loess–paleosol proxy records and stalagmite δ18O records shows that the strengthening of EASM precipitation lagged that of deglacial warming by ca. 3 kyr. Moreover, intense soil formation in the loess deposits, caused by substantial increases in summer monsoon precipitation, only started around 12 kyr BP (ca. 7 kyr lag). Our results thus show that the intensification of EASM precipitation unambiguously lagged deglacial warming and NH summer insolation, and may contribute to a better understanding of the mechanisms controlling ice age terminations.  相似文献   
30.
Net sediment transport in tidal basins is a subtle imbalance between large fluxes produced by the flood/ebb alternation. The imbalance arises from several mechanisms of suspended transport. Lag effects and tidal asymmetries are regarded as dominant, but defined in different frames of reference (Lagrangian and Eulerian, respectively). A quantitative ranking of their effectiveness is therefore missing. Furthermore, although wind waves are recognized as crucial for tidal flats’ morphodynamics, a systematic analysis of the interaction with tidal mechanisms has not been carried out so far. We review the tide-induced barotropic mechanisms and discuss the shortcomings of their current classification for numerical process-based models. Hence, we conceive a unified Eulerian framework accounting for wave-induced resuspension. A new methodology is proposed to decompose the sediment fluxes accordingly, which is applicable without needing (semi-) analytical approximations. The approach is tested with a one-dimensional model of the Vlie basin, Wadden Sea (The Netherlands). Results show that lag-driven transport is dominant for the finer fractions (silt and mud). In absence of waves, net sediment fluxes are landward and spatial (advective) lag effects are dominant. In presence of waves, sediment can be exported from the tidal flats and temporal (local) lag effects are dominant. Conversely, sand transport is dominated by the asymmetry of peak ebb/flood velocities. We show that the direction of lag-driven transport can be estimated by the gradient of hydrodynamic energy. In agreement with previous studies, our results support the conceptualization of tidal flats’ equilibrium as a simplified balance between tidal mechanisms and wave resuspension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号