首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2070篇
  免费   124篇
  国内免费   30篇
测绘学   78篇
大气科学   167篇
地球物理   441篇
地质学   758篇
海洋学   180篇
天文学   364篇
综合类   6篇
自然地理   230篇
  2023年   13篇
  2022年   9篇
  2021年   38篇
  2020年   50篇
  2019年   66篇
  2018年   70篇
  2017年   75篇
  2016年   98篇
  2015年   78篇
  2014年   76篇
  2013年   154篇
  2012年   85篇
  2011年   122篇
  2010年   103篇
  2009年   130篇
  2008年   105篇
  2007年   106篇
  2006年   91篇
  2005年   65篇
  2004年   71篇
  2003年   65篇
  2002年   45篇
  2001年   39篇
  2000年   46篇
  1999年   36篇
  1998年   32篇
  1997年   18篇
  1996年   27篇
  1995年   19篇
  1994年   17篇
  1993年   9篇
  1992年   16篇
  1991年   16篇
  1990年   20篇
  1989年   15篇
  1988年   13篇
  1987年   12篇
  1986年   8篇
  1985年   16篇
  1984年   21篇
  1983年   16篇
  1982年   16篇
  1981年   13篇
  1980年   5篇
  1979年   14篇
  1978年   12篇
  1977年   9篇
  1974年   8篇
  1973年   9篇
  1971年   4篇
排序方式: 共有2224条查询结果,搜索用时 31 毫秒
71.
Accurate water level forecasts are essential for flood warning. This study adopts a data‐driven approach based on the adaptive network–based fuzzy inference system (ANFIS) to forecast the daily water levels of the Lower Mekong River at Pakse, Lao People's Democratic Republic. ANFIS is a hybrid system combining fuzzy inference system and artificial neural networks. Five ANFIS models were developed to provide water level forecasts from 1 to 5 days ahead, respectively. The results show that although ANFIS forecasts of water levels up to three lead days satisfied the benchmark, four‐ and five‐lead‐day forecasts were only slightly better in performance compared with the currently adopted operational model. This limitation is imposed by the auto‐ and cross‐correlations of the water level time series. Output updating procedures based on the autoregressive (AR) and recursive AR (RAR) models were used to enhance ANFIS model outputs. The RAR model performed better than the AR model. In addition, a partial recursive procedure that reduced the number of recursive steps when applying the AR or the RAR model for multi‐step‐ahead error prediction was superior to the fully recursive procedure. The RAR‐based partial recursive updating procedure significantly improved three‐, four‐ and five‐lead‐day forecasts. Our study further shows that for long lead times, ANFIS model errors are dominated by lag time errors. Although the ANFIS model with the RAR‐based partial recursive updating procedure provided the best results, this method was able to reduce the lag time errors significantly for the falling limbs only. Improvements for the rising limbs were modest. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
72.
73.
74.
75.
76.
77.
78.
Abstract

We attempt to describe the role of tessellated models of space within the discipline of Geographic Information Systems (GIS) – a speciality coming largely out of Geography and Land Surveying, where there was a strong need to represent information about the land’s surface within a computer system rather than on the original paper maps. We look at some of the basic operations in GIS, including dynamic and kinetic applications. We examine issues of topology and data structures, and produced a tessellation model that may be widely applied both to traditional “object” and “field” data types. The Part I of this study examined object and field spatial models, the Voronoi extension of objects, and the graphs that express the resulting adjacencies. The required data structures were also briefly described, along with 2D and 3D structures and hierarchical indexing. The importance of graph duality was emphasized. Here, this second paper builds on the structures described in the first, and examines how these may be modified: change may often be associated with either viewpoint or time. Incremental algorithms permit additional point insertion, and applications involving the addition of skeleton points, for map scanning, contour enrichment or watershed delineation and simulation. Dynamic algorithms permit skeleton smoothing, and higher order Voronoi diagram applications, including Sibson interpolation. Kinetic algorithms allow collision detection applications, free-Lagrange flow modeling, and pen movement simulation for map drawing. If desired these methods may be extended to 3D. Based on this framework, it can be argued that tessellation models are fundamental to our understanding and processing of geographical space, and provide a coherent framework for understanding the “space” in which we exist.  相似文献   
79.
Coastal ecosystems are complex and species rich, but are vulnerable to degradation from a variety of anthropogenic activities. Nevertheless, information on inter‐tidal community composition in the Caribbean Basin and at other oceanic sites is lacking. Such information is essential to developing a more comprehensive understanding of rocky inter‐tidal systems and their responses to global change. The goals of this study were to determine the relative importance of environmental (wave power density, wave height), habitat (e.g. algal cover, slope, complexity of rock surfaces) and anthropogenic (distance to roads, population density) factors associated with the structure of local assemblages at multiple shore heights and the regional metacommunity of mobile invertebrates on oceanic rocky inter‐tidal habitats. Environmental characteristics associated with habitat complexity (algal cover, rock surface complexity) and human population density were most strongly associated with abundance and biodiversity of invertebrates. Species richness was positively correlated with surface complexity, but abundance was negatively correlated with both surface complexity and per cent algal cover. By contrast, abundance of invertebrates was positively correlated with human population density, and diversity was negatively correlated with human population density. Abundance of invertebrates was greatest in the mid inter‐tidal zone, whereas diversity was greatest in the lower inter‐tidal zone. Metacommunity structure was Gleasonian, but the gradient along which species turnover occurred was correlated with measures of wave exposure, rather than anthropogenic activity. Unlike in previous studies, mostly at mainland sites, human activity primarily altered dominance patterns of communities, while having relatively little effect on species richness or composition.  相似文献   
80.
Drilling of a deep borehole does not normally allow for hydrologic testing during the drilling period. It is only done when drilling experiences a large loss (or high return) of drilling fluid due to penetration of a large-transmissivity zone. The paper proposes the possibility of conducting flowing fluid electrical conductivity (FFEC) logging during the drilling period, with negligible impact on the drilling schedule, yet providing important information on depth locations of both high- and low-transmissivity zones and their hydraulic properties. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The method has been applied to the drilling of a 2,500-m borehole at Åre, central Sweden, firstly when the drilling reached 1,600 m, and then when the drilling reached the target depth of 2,500 m. Results unveil eight hydraulically active zones from 300 m down to borehole bottom, with depths determined to within the order of a meter. Further, the first set of data allows the estimation of hydraulic transmissivity values of the six hydraulically conductive zones found from 300 to 1,600 m, which are very low and range over one order of magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号