首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
测绘学   1篇
地球物理   1篇
天文学   15篇
  2020年   1篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
The Solar Optical Telescope (SOT) onboard Hinode aims to obtain vector magnetic fields on the Sun through precise spectropolarimetry of solar spectral lines with a spatial resolution of 0.2 – 0.3 arcsec. A photometric accuracy of 10−3 is achieved and, after the polarization calibration, any artificial polarization from crosstalk among Stokes parameters is required to be suppressed below the level of the statistical noise over the SOT’s field of view. This goal was achieved by the highly optimized design of the SOT as a polarimeter, extensive analyses and testing of optical elements, and an end-to-end calibration test of the entire system. In this paper we review both the approach adopted to realize the high-precision polarimeter of the SOT and its final polarization characteristics.  相似文献   
12.
The Solar Optical Telescope (SOT) aboard the Hinode satellite (formerly called Solar-B) consists of the Optical Telescope Assembly (OTA) and the Focal Plane Package (FPP). The OTA is a 50-cm diffraction-limited Gregorian telescope, and the FPP includes the narrowband filtergraph (NFI) and the broadband filtergraph (BFI), plus the Stokes Spectro-Polarimeter (SP). The SOT provides unprecedented high-resolution photometric and vector magnetic images of the photosphere and chromosphere with a very stable point spread function and is equipped with an image-stabilization system with performance better than 0.01 arcsec rms. Together with the other two instruments on Hinode (the X-Ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS)), the SOT is poised to address many fundamental questions about solar magnetohydrodynamics. This paper provides an overview; the details of the instrument are presented in a series of companion papers. M. Otsubo is a former NAOJ staff scientist.  相似文献   
13.
The Solar Optical Telescope (SOT) aboard the Solar-B satellite (Hinode) is designed to perform high-precision photometric and polarimetric observations of the Sun in visible light spectra (388 – 668 nm) with a spatial resolution of 0.2 – 0.3 arcsec. The SOT consists of two optically separable components: the Optical Telescope Assembly (OTA), consisting of a 50-cm aperture Gregorian with a collimating lens unit and an active tip-tilt mirror, and an accompanying Focal Plane Package (FPP), housing two filtergraphs and a spectro-polarimeter. The optomechanical and optothermal performance of the OTA is crucial to attain unprecedented high-quality solar observations. We describe in detail the instrument design and expected stable diffraction-limited on-orbit performance of the OTA, the largest state-of-the-art solar telescope yet flown in space.  相似文献   
14.
The Hinode Solar Optical Telescope (SOT) is the first space-borne visible-light telescope that enables us to observe magnetic-field dynamics in the solar lower atmosphere with 0.2 – 0.3 arcsec spatial resolution under extremely stable (seeing-free) conditions. To achieve precise measurements of the polarization with diffraction-limited images, stable pointing of the telescope (<0.09 arcsec, 3σ) is required for solar images exposed on the focal plane CCD detectors. SOT has an image stabilization system that uses image displacements calculated from correlation tracking of solar granules to control a piezo-driven tip-tilt mirror. The system minimizes the motions of images for frequencies lower than 14 Hz while the satellite and telescope structural design damps microvibration in higher frequency ranges. It has been confirmed from the data taken on orbit that the remaining jitter is less than 0.03 arcsec (3σ) on the Sun. This excellent performance makes a major contribution to successful precise polarimetric measurements with 0.2 – 0.3 arcsec resolution. K. Kobayashi now at NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA.  相似文献   
15.
A coronal condensation was observed simultaneously with Fexiv 5303, Fex 6374, Fe xi 7892, and H filtergraphs. The size and shape of the condensation in 5303 are different from those in other filtergrams. H filtergrams taken around the eclipse time show that a small transient prominence exists in close proximity to the condensation core and behaves like a post-flare loop system, though the appearance is quite different and no flare-report exists. A small-scale energetic phenomenon seems to have occurred at the top of magnetic loops.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 285.  相似文献   
16.
One-dimensional hydrodynamic simulations are performed in order to examine the influence of initial atmospheric structures on the dynamics of spicules. This is an extended version of our previous spicule theory: spicules are produced by the shock wave (MHD slow mode shock) which originates from a bright point appearance (sudden pressure increase) at the network in the photosphere or in the low chromosphere. Simulation results well reproduce the observational facts that spicules are absent over plages and long under coronal holes. The physical reason is that the growth of a shock wave during its propagation through the chromosphere is small in plage regions and large in coronal hole regions, since the growth of a shock is determined by the density ratio ( h 0/ c ) between the bright point and the corona. An empirical formula H max ( h 0/ c )0.46 is obtained, where H max is the maximum height of spicules above the transition region. The cross-section of the vertical magnetic flux tube is assumed to be constant in the numerical simulations.  相似文献   
17.
The intensity ratios of Niii, Oiii, Oiv, and Ov lines observed by the HCO experiment on Skylab are compared with the results of recent multilevel calculations. It is found that solar transition-region spectra require Lyman continuum absorption. The equivalent optical thickness of the absorbers causing the weakening is found to be 1.6–1.7 for a quiet area, 1.4–1.9 for a coronal hole, and 2.4–2.5 for active regions. These values are consistent with previous estimates from different methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号