首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   6篇
测绘学   7篇
大气科学   9篇
地球物理   93篇
地质学   80篇
海洋学   19篇
天文学   71篇
自然地理   24篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   10篇
  2017年   10篇
  2016年   13篇
  2015年   13篇
  2014年   6篇
  2013年   11篇
  2012年   16篇
  2011年   10篇
  2010年   7篇
  2009年   24篇
  2008年   15篇
  2007年   20篇
  2006年   8篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   12篇
  2001年   11篇
  2000年   13篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   8篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   3篇
  1971年   2篇
  1968年   1篇
  1951年   1篇
  1922年   1篇
排序方式: 共有303条查询结果,搜索用时 234 毫秒
101.
In this paper we develop further the model for the migration of planets introduced in Del Popolo et al. We first model the protoplanetary nebula as a time-dependent accretion disc, and find self-similar solutions to the equations of the accretion disc that give us explicit formulae for the spatial structure and the temporal evolution of the nebula. These equations are then used to obtain the migration rate of the planet in the planetesimal disc, and to study how the migration rate depends on the disc mass, on its time evolution and on some values of the dimensionless viscosity parameter α . We find that planets that are embedded in planetesimal discs, having total mass of  10-4-0.1 M  , can migrate inward a large distance for low values of α (e.g.,   α ≃10-3-10-2)  and/or large disc mass, and can survive only if the inner disc is truncated or because of tidal interaction with the star. Orbits with larger a are obtained for smaller values of the disc mass and/or for larger values of α . This model may explain several orbital features of the recently discovered giant planets orbiting nearby stars.  相似文献   
102.
We present SOHO/CDS observations taken during the gradual phase of the X17 flare that occurred on October 28, 2003. The CDS data are supplemented with TRACE and ground-based observations. The spectral observations allow us to determine velocities from the Doppler shifts measured in the flare loops and in the two ribbon kernels, one hour and a half after the flare peak. Strong downflows (>70 km s−1) are observed along the loop legs at transition-region temperatures. The velocities are close to those expected for free fall. Observations and results from a hydrodynamic simulation are consistent with the heating taking place for a short time near the top of the arcade. Slight upflows are observed in the outer edges of the ribbons (<60 km s−1) in the EUV lines formed at log T < 6.3. These flows could correspond to the so-called “gentle evaporation.” At “flare” temperatures (Fe xix, log T = 6.9), no appreciable flows are observed. The observations are consistent with the general standard reconnection models for two-ribbons flares.  相似文献   
103.
Del Moro  D.  Berrilli  F.  Duvall  T.L.  Kosovichev  A.G. 《Solar physics》2004,221(1):23-32
In this paper we investigate the temporal evolution and geometric properties of solar supergranular features. For this purpose we apply an automatic feature-tracking algorithm to a 6-day time series of 18 near-surface flowmaps containing 548 target objects. Lifetimes are calculated by measuring the time elapsing between the birth and death of each target. Using an exponential fit on the lifetime distribution of single supergranules we derived a mean lifetime of 22 hours. Based on the application of segmentation numerical procedures, we estimated characteristic geometric parameters such as area distributions of supergranular cells. We also derive the relationship between measured lifetime and the area of the supergranules.  相似文献   
104.
We have used merger-trees realizations to study the formation of dark matter haloes. The construction of merger-trees is based on three different pictures about the formation of structures in the Universe. These pictures include the spherical collapse (SC), the ellipsoidal collapse (EC) and the non-radial collapse (NR). The reliability of merger-trees has been examined comparing their predictions related to the distribution of the number of progenitors, as well as the distribution of formation times, with the predictions of analytical relations. The comparison yields a very satisfactory agreement. Subsequently, the mass-growth histories (MGH) of haloes have been studied and their formation scale factors have been derived. This derivation has been based on two different definitions that are (a) the scale factor when the halo reaches half its present day mass and (b) the scale factor when the mass-growth rate falls below some specific value. Formation scale factors follow approximately power laws of mass. It has also been shown that MGHs are in good agreement with models proposed in the literature that are based on the results of N-body simulations. The agreement is found to be excellent for small haloes but, at the early epochs of the formation of large haloes, MGHs seem to be steeper than those predicted by the models based on N-body simulations. This rapid growth of mass of heavy haloes is likely to be related to a steeper central density profile indicated by the results of some N-body simulations.  相似文献   
105.
Post-event Interferometric Synthetic Aperture Radar (InSAR) analysis on a stack of 45 C-band SAR images acquired by the ESA Sentinel-1 satellites from 9 October 2014 to 19 June 2017 allowed the identification of a clear precursory deformation signal for the Maoxian landslide (Mao County, Sichuan Province, China). The landslide occurred in the early morning of 24 June 2017 and killed more than 100 people in the village of Xinmo. Sentinel-1 images have been processed through an advanced multi-interferogram analysis capable of maximising the density of measurement points, generating ground deformation maps and displacement time series for an area of 460 km2 straddling the Minjiang River and the Songping Gully. InSAR data clearly show the precursors of the slope failure in the source area of the Maoxian landslide, with a maximum displacement rate detected of 27 mm/year along the line of sight of the satellite. Deformation time series of measurement points identified within the main scarp of the landslide exhibit an acceleration starting from April 2017. A detailed time series analysis leads to the classification of different deformation behaviours. The Fukuzono method for forecasting the time of failure appear to be applicable to the displacement data exhibiting progressive acceleration. Results suggest that satellite radar data, systematically acquired over large areas with short revisiting time, could be used not only as a tool for mapping unstable areas, but also for landslide monitoring, at least for some typologies of sliding phenomena.  相似文献   
106.
Understanding ecosystem processes from a functional point of view is essential to study relationships among climate variability, biogeochemical cycles, and surface-atmosphere interactions. Increasingly during the last decades, the eddy covariance (EC) method has been applied in terrestrial, marine and urban ecosystems to quantify fluxes of greenhouse gases (e.g., CO2, H2O) and energy (e.g., sensible and latent heat). Networks of EC systems have been established in different regions and have provided scientific information that has been used for designing environmental and adaptation policies. In this context, this article outlines the conceptual and technical framework for the establishment of an EC regional network (i.e., MexFlux) to measure the surface-atmosphere exchange of heat and greenhouse gases in Mexico. The goal of the network is to improve our understanding of how climate variability and environmental change influence the dynamics of Mexican ecosystems. First, we discuss the relevance of CO2 and water vapor exchange between terrestrial ecosystems and the atmosphere. Second, we briefly describe the EC basis and present examples of measurements in terrestrial and urban ecosystems of Mexico. Finally, we describe the conceptual and operational goals at short-, medium-, and long-term scales for continuity of the MexFlux network.  相似文献   
107.
At present, Western Sahara is politically one of the most sensitive areas of the World. Its economic development could be achieved through the exploitation of mineral resources that can be found in the almost unexplored area administrated by the Saharawi Arab Democratic Republic. In this paper, we describe applications of known and cost-effective remote sensing techniques to detect and map areas containing mineral deposits, through the enhancement of Landsat ETM+ imageries. Several image processing techniques (false color composite, band ratioing, and principal component analysis) were used to highlight the presence of iron deposits. Two test areas were selected, one in Western Sahara and another one in Algeria. The occurrence of iron deposits in these test areas was assured using literature data for the Algerian test site and through a field campaign for the Western Sahara. There is good agreement between the ground truth data and the results obtained by the enhancements of the satellite images. Landsat images can be downloaded free of charge and their enhancements does not need expensive hardware or software tools. Therefore this technology could be transferred to the Saharawi technicians, enabling them to explore and manage the mineral resources of their own country independently.  相似文献   
108.
The active Ruinon rockslide is located on the left bank of the Frodolfo River valley (Valfurva, Italian Alps) and is developed on the Confinale deep-seated gravitational slope deformation. Ruinon landslide is a major hazard for valley inhabitants in that rapid movement might dam the stream and create a debris flow. The landslide is strongly controlled by preexisting structural features and is believed to have been triggered by postglacial debuttressing. Ground-based radar interferometry has been used to map surface deformation over time of the entire unstable zone of Ruinon landslide with high spatial resolution and at a very high temporal acquisition rate (about five images per hour). The activity of the landslide shows strong periodicity, with summer and autumn accelerations and winter deceleration. From a correlation between the landslide acceleration and a class of rainfall event, we deduce the specific rainfall conditions that accelerate the instability of the landslide area. The study results suggest an improved tool for early warning of events of potentially catastrophic landslide instability.  相似文献   
109.
The assessment of the risks associated with contamination by elevated levels of pollutants is a major issue in most parts of the world. The risk arises from the presence of a pollutant and from the uncertainty associated with estimating its concentration, extent and trajectory. The uncertainty in the assessment comes from the difficulty of measuring the pollutant concentration values accurately at any given location and the impossibility of measuring it at all locations within a study zone. Estimations tend to give smoothed versions of reality, with the smoothing effect being inversely proportional to the amount of data. If risk is a measure of the probability of pollutant concentrations exceeding specified thresholds, then the variability is the key feature in risk assessment and risk analysis. For this reason, geostatistical simulations provide an appropriate way of quantifying risk by simulating possible “realities” and determining how many of these realities exceed the contamination thresholds, and, finally, provides a means of visualizing risk and the geological causes of risk. This study concerns multivariate simulations of organic and inorganic pollutants measured in terrain samples to assess the uncertainty for the risk analysis of a contaminated site, an industrial site in northern Italy that has to be remediated. The main geostatistical tools are used to model the local uncertainty of pollutant concentrations, which prevail at any unsampled site, in particular by means of stochastic simulation. These models of uncertainty have been used in the decision-making processes to identify the areas targeted for remediation.  相似文献   
110.
Convective cloud variability on many times scales can be viewed as having three major components: a suppressed phase of shallow and congestus clouds, a disturbed phase of deep convective clouds, and a mature phase of transition to stratiform upper-level clouds. Cumulus parameterization development has focused primarily on the second phase until recently. Consequently, many parameterizations are not sufficiently sensitive to variations in tropospheric humidity. This shortcoming may affect global climate model simulations of climate sensitivity to external forcings, the continental diurnal cycle of clouds and precipitation, and intraseasonal precipitation variability. The lack of sensitivity can be traced in part to underestimated entrainment of environmental air into rising convective clouds and insufficient evaporation of rain into the environment. As a result, the parameterizations produce deep convection too easily while stabilizing the environment too quickly to allow the effects of convective mesoscale organization to occur. Recent versions of some models have increased their sensitivity to tropospheric humidity and improved some aspects of their variability, but a parameterization of mesoscale organization is still absent from most models. Evidence about the effect of these uncertainties on climate change projections suggests that climate modelers should make improved simulation of high and convective clouds as high a priority as better representations of low clouds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号