首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59418篇
  免费   746篇
  国内免费   299篇
测绘学   1404篇
大气科学   4029篇
地球物理   10914篇
地质学   24200篇
海洋学   4756篇
天文学   12026篇
综合类   235篇
自然地理   2899篇
  2022年   257篇
  2021年   436篇
  2020年   498篇
  2019年   576篇
  2018年   3749篇
  2017年   3515篇
  2016年   2529篇
  2015年   690篇
  2014年   1056篇
  2013年   1850篇
  2012年   2203篇
  2011年   4118篇
  2010年   3739篇
  2009年   4187篇
  2008年   3457篇
  2007年   4077篇
  2006年   1602篇
  2005年   1496篇
  2004年   1425篇
  2003年   1532篇
  2002年   1243篇
  2001年   894篇
  2000年   831篇
  1999年   723篇
  1998年   715篇
  1997年   724篇
  1996年   587篇
  1995年   572篇
  1994年   499篇
  1993年   454篇
  1992年   408篇
  1991年   423篇
  1990年   437篇
  1989年   390篇
  1988年   369篇
  1987年   398篇
  1986年   415篇
  1985年   507篇
  1984年   545篇
  1983年   542篇
  1982年   496篇
  1981年   466篇
  1980年   449篇
  1979年   408篇
  1978年   374篇
  1977年   375篇
  1976年   340篇
  1975年   350篇
  1974年   337篇
  1973年   367篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The equations of motion of an artificial satellite are given in nonsingular variables. Any term in the geopotential is considered as well as luni-solar perturbations up to an arbitrary power ofr/r, r being the geocentric distance of the disturbing body. Resonances with tesseral harmonics and with the Moon or Sun are also considered. By neglecting the shadow effect, the disturbing function for solar radiation is also developed in nonsingular variables for the long periodic perturbations. Formulas are developed for implementation of the theory in actual computations.  相似文献   
992.
The lunar interior is comprised of two major petrological provinces: (1) an outer zone several hundred km thick which experienced partial melting and crystallization differentiation 4.4–4.6 b.y. ago to form the lunar crust together with an underlying complementary zone of ultramafic cumulates and residua, and (2) the primordial deep interior which was the source region for mare basalts (3.2–3.8 b.y.) and had previously been contaminated to varying degrees with highly fractionated material derived from the 4.4–4.6 b.y. differentiation event. In both major petrologic provinces, basaltic magmas have been produced by partial melting. The chemical characteristics and high-pressure phase relationships of these magmas can be used to constrain the bulk compositions of their respective source regions.Primitive low-Ti mare basalts (e.g., 12009, 12002, 15555 and Green Glass) possessing high normative olivine and high Mg and Cr contents, provide the most direct evidence upon the composition of the primordial deep lunar interior. This composition, as estimated on the basis of high pressure equilibria displayed by the above basalts, combined with other geochemical criteria, is found to consist of orthopyroxene + clinopyroxene + olivine with total pyroxenes > olivine, 100 MgO/(MgO + FeO) = 75–80, about 4% of CaO and Al2O3 and 2× chondritic abundances of REE, U and Th. This composition is similar to that of the earth's mantle except for a higher pyroxene/olivine ratio and lower 100 MgO/(MgO + FeO).The lunar crust is believed to have formed by plagioclase elutriation within a vast ocean of parental basaltic magma. The composition of the latter is found experimentally by removing liquidus plagioclase from the observed mean upper crust (gabbroic anorthosite) composition, until the resulting composition becomes multiply saturated with plagioclase and a ferromagnesian phase (olivine). This parental basaltic composition is almost identical with terrestrial oceanic tholeiites, except for partial depletion in the two most volatile components, Na2 and SiO2. Similarity between these two most abundant classes of lunar and terrestrial basaltic magmas strongly implies corresponding similarities between their source regions. The bulk composition of the outer 400 km of the Moon as constrained by the 4.6-4.4 b.y. parental basaltic magma is found to be peridotitic, with olivine > pyroxene, 100 MgO/ (MgO + FeO) 86, and about 2× chondritic abundances of Ca, Al and REE. The Moon thus appears to have a zoned structure, with the deep interior (below 400 km) possessing somewhat higher contents of FeO and SiO2 than the outer 400 km. This zoned model, derived exclusively on petrological grounds, provides a quantitative explanation of the Moon's mean density, moment of inertia and seismic velocity profile.The bulk composition of the entire Moon, thus obtained, is very similar to the pyrolite model composition for the Earth's mantle, except that the Moon is depleted in Na (and other volatile elements) and somewhat enriched in iron. The similarity in major element composition extends also to the abundances of REE, U and Th. These compositional similarities, combined with the identity in oxygen isotope ratios between the Moon and the Earth's mantle, are strongly suggestive of a common genetic relationship.  相似文献   
993.
The composition of the impact plasma produced by fast dust particles (v > 1 km/sec) hitting an Au or W target was measured both with a model of the HELIOS micrometeoroid experiment (low electric field at the target) and a high field detector. The plasma composition and the total plasma charge depend strongly on the impact velocity and the electric field strength at the target. Spectra of 9 different projectile-target combinations were analysed. Two types of spectra could be observed, depending on the projectile material. (1) Spectra of metals and hard dielectrics (Mohs' hardness ? 5). Particle constituents of low ionisation energy (e · u ? 7eV, e.g. Na, K, Al) dominate the spectra of these materials at impact velocities below 10 km/sec. At higher speed the relative intensities change and new ions with higher ionisation energies appear. (2) Spectra of soft dielectrics (Mohs' hardness < 3). Below 9 km/sec these materials produced less total charge than did the others. The highest masses were detected at 74 amu. The relative abundance of ions with low ionization energies such as Li, Na, K, etc. is comparatively small. Negative ions were also observed in the impact plasma. Their total number was found to be approximately 3–6% of that of the positive ions at 6 km/sec particle speed.  相似文献   
994.
The observed density of Venus is about 2% smaller than would be expected if Venus were a twin planet of the Earth, possessing an identical internal composition and structure. In principle, this could be explained by a process of physical segregation of metal particles from silicate particles in the solar nebula prior to accretion, so that Venus accreted from relatively metal-depleted material. However, this model encounters severe difficulties in explaining the nature of the physical segregation process and also the detailed chemical composition of the Earth's mantle. Two alternative hypotheses are examined, both of which attempt to explain the density difference in terms of chemical fractionation processes. Both of these hypotheses assume that the relative abundances of the major elements Fe, Si, Mg, Al, and Ca are similar in both planets. According to the first hypothesis, a larger proportion of the total iron in Venus is present as iron oxide in the mantle, so that the core-to-mantle ratio is smaller than in the Earth. This model implies that Venus is more oxidized than the Earth, with its lower intrinsic density (i.e., corrected to equivalent pressures and temperatures) due to the larger amount of oxygen present. The difference between oxidation states is attributed to differing degrees of accretional heating arising from the relatively smaller mass of Venus. On the other hand, the second hypothesis maintains that Venus is more reduced than the Earth, with its mantle essentially devoid of oxidized iron. The difference intrinsic densities is attributed to the Earth accreting at a lower temperature than Venus as a result of the Earth's greater distance from the center of the nebula. As a result, large amounts of sulfur accreted on the Earth but not on Venus. The sulfur, which entered the core, is believed to have increased the mean density of the Earth because of its relatively high atomic weight. The hypothesis also implies that most of the Earth's potassium, because of its chalcophile properties, entered the core.These hypotheses are evaluated in the light of existing data. The second hypothesis leads to an intrinsic density for Venus which is only 0.4% smaller than that of the Earth. This difference is much smaller than is believed to exist. A wide range of chemical evidence is found to be unfavorable to this second hypothesis, but to be consistent with the interpretation that Venus is more oxidized than the Earth, as required by the first hypothesis.  相似文献   
995.
R.E. Danielson 《Icarus》1977,30(3):462-478
Models of the interior of Uranus (Podolak, 1976) suggest that the abundances of such substances as CH4 are greatly enhanced with respect to solar abundances of heavy elements. Such enhancement leads to a new type of model atmosphere for Uranus, which agrees with observation if the internal energy flux is small (?10%) compared with the absorbed solar energy. An important feature of the models is the presence of a cloud of CH4 droplets whose top is at a temperature of ?90°K and a pressure of ?4atm. Above the cloud, the atmosphere is stable because of the rapid decrease of the thermal flux with depth. Being saturated, most of the observable gaseous CH4 is near the cloud; the CH4 abundance above the cloud, of the order of 5 km-am, is a very sensitive function of the cloud-top temperature.  相似文献   
996.
M. Podolak  R.E. Danielson 《Icarus》1977,30(3):479-492
The scattering and absorption properties of Axel dust were investigated by means of Mie theory. We find that a flat distribution of particle radii between 0 and 0.1 μm, and an imaginary part of the index of refraction which varies as λ?2.5 produce a good fit to the variation of Titan's geometric albedo with wavelength (λ) provided that τext, the extinction optical depth of Titan's atmosphere at 5000 Å, is about 10. The real part of the complex index is taken to be 2.0. The model assumes that the mixing ratio of Axel dust to gas is uniform above the surface of Titan. The same set of physical properties for Axel dust also produces a good fit to Saturn's albedo if τext = 0.7 at 5000 Å. To match the increase in albedo shortward of 3500 Å, a clear layer (containing about 7 km-am H2) is required above the Axel dust. Such a layer is also required to explain the limb brightening in the ultraviolet. These models can be used to analyze the observed equivalent widths of the visible methane bands. The analysis yields an abundance of the order of 1000 m-am CH4 in Titan's atmosphere. The derived CH4/H2 mixing ratio for Saturn is about 3.5 × 10?3 or an enhancement of about 5 over the solar ratio.  相似文献   
997.
G.E. Hunt  J.T. Bergstralh 《Icarus》1977,30(3):511-530
During the 1972 apparition of Jupiter, we carried out a patrol of the (3,0) S(1) and (4,0) S(1) quadrupole lines of molecular hydrogen in the equatorial region and in bands bounded by ±15 and ±49° zenographic latitude from the McDonald and Table Mountain Observatories. At the center of the Jovian disk, we found evidence of temporal variability of both lines over the duration of our observing period. We employ a technique which takes into account all radiative transfer processes in an inhomogeneous model of Jupiter's atmosphere, and use it to derive the effective level of formation of the spectral lines and the relative abundance of hydrogen. In this way, we are able to correlate measured changes in the equivalent widths of the hydrogen lines with variations in cloud structure. The effective pressure level at which the (4,0) S(1) line is formed varies in the range 2 ± 0.5 to 1.3 ± 0.2 atm, while for the (3,0) S(1) line, the pressure varies between 1.6 ± 0.5 and 1 ± 0.4 atm. If these variations are interpreted in terms of changes in elevation of the top of a dense lower cloud deck, the elevation apparently varied with an amplitude of 25 km during the observational period.Spatial variations in the strengths of both lines were also found. Both lines are weaker at the east limb than at the center of the disk (15–19%) while the variations toward the west limb are less pronounced (5%). Similar center-to-limb variations were found in the latitude bands bounded by ±15 and ±49°, although the lines were stronger in the northern component at the time of the observations.  相似文献   
998.
A two-dimensional nonlinear hydrodynamic model has been developed for studying the global scale winds, temperature, and compositional structure of the mesosphere and thermosphere of Venus. The model is driven by absorption of solar radiation. Ultraviolet radiation produces both heating and photodissociation. Infrared solar heating and thermal cooling are also included with an accurate NLTE treatment. The most crucial uncertainty in determining the solar drive is the efficiency by which λ < 1080 A? solar radiation is converted to heat. This question was analyzed in Part I, where it was concluded that essentially all hot atom and O(1D) energy may be transferred to vibrational-rotational energy of CO2 molecules. If this is so, the minimum possible euv heating occurs and is determined by the quenching of the resulting excess rotational energy. The hydrodynamic model is integrated with this minimum heating and neglecting any small-scale vertical eddy mixing. The results are compared with predictions of another model with the same physics except that it assumes that 30% of λ < 1080 A? radiation goes into heat and that the heating from longer-wavelength radiation includes the O(1D) energy. For the low-efficiency model, exospheric temperatures are ?300°K on the dayside and drop to < 180°K at the antisolar point. For the higher-efficiency model, the day-to-night temperature variation is from ?600°K to ?250°K. Both versions of the model predict a wind of several hundred meters per second blowing across the terminator and abruptly weakening to small values on the nightside with the mass flow consequently going into a strong tongue of downward motion on the nightside of the terminator. The presence of this circulation could be tested observationally by seeing if its signature can be found in temperature measurements. Both versions of the model indicate that a self-consistent large-scale circulation would maintain oxygen concentrations with ?5% mixing ratios near the dayside F-1 ionospheric peak but ?40% at the antisolar point at the same pressure level.  相似文献   
999.
Oxidation of CH4 provides the major source for atmospheric H2 which is removed mainly by reaction with OH. Biological activity at the Earth's surface appears to represent at most a minor sink for H2. Anthropogenic activity is a significant source for both H2 and CO in the present atmosphere and may be expected to exert a growing influence in the future. Models are presented which suggest a rise in the mixing ratio of H2 from its present value of 5.6 × 10?7 to about 1.8 × 10?6 by the year 2100. The mixing ratio of CO should grow from 9.7 × 10?8 to 2.3 × 10?7 over the same time period and there should be a rise in CH4 by about a factor of 1.5 associated with anthropogenically induced reductions in tropospheric OH.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号