首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1369篇
  免费   47篇
  国内免费   4篇
测绘学   21篇
大气科学   88篇
地球物理   342篇
地质学   495篇
海洋学   113篇
天文学   264篇
综合类   8篇
自然地理   89篇
  2022年   10篇
  2021年   11篇
  2020年   12篇
  2019年   12篇
  2018年   32篇
  2017年   12篇
  2016年   39篇
  2015年   17篇
  2014年   41篇
  2013年   54篇
  2012年   42篇
  2011年   47篇
  2010年   58篇
  2009年   66篇
  2008年   58篇
  2007年   57篇
  2006年   65篇
  2005年   41篇
  2004年   46篇
  2003年   35篇
  2002年   28篇
  2001年   23篇
  2000年   18篇
  1999年   16篇
  1998年   19篇
  1997年   12篇
  1996年   27篇
  1995年   16篇
  1994年   16篇
  1993年   15篇
  1992年   13篇
  1991年   12篇
  1990年   12篇
  1989年   10篇
  1988年   16篇
  1987年   15篇
  1986年   12篇
  1985年   31篇
  1984年   22篇
  1983年   35篇
  1982年   34篇
  1981年   26篇
  1980年   21篇
  1979年   35篇
  1978年   28篇
  1977年   17篇
  1976年   21篇
  1975年   18篇
  1974年   24篇
  1973年   27篇
排序方式: 共有1420条查询结果,搜索用时 62 毫秒
21.
A method is described for analyzing nanogram quantities of chlorinated hydrocarbons from 1-1 samples of seawater. Seawater samples are pumped through a copper column containing a mixture by weight of 5% activated carbon powder, 10% MgO and 85% refined diatomaceous earth. The chlorinated hydrocarbons in the seawater are adsorbed or trapped on the column and subsequently eluted with 30% benzene in acetone (v/v) for analysis by gas-liquid chromatography.This procedure was used to analyze chlorinated hydrocarbon levels in samples collected off the southern California coast. We suggest that anthropogenic chlorinated hydrocarbons can be used for the investigation of large-scale ocean currents and mixing processes.  相似文献   
22.
Multi-AUV Control and Adaptive Sampling in Monterey Bay   总被引:3,自引:0,他引:3  
Operations with multiple autonomous underwater vehicles (AUVs) have a variety of underwater applications. For example, a coordinated group of vehicles with environmental sensors can perform adaptive ocean sampling at the appropriate spatial and temporal scales. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August, 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project  相似文献   
23.
Abstract The crystallography and crystal chemistry of a new calcium-titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 ± 0.002 nm and c = 0.492 ± 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)UNK | (001)mel and <10T0>UNK | <100>mel. If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3ml or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3–1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti-free analog with a formula of Ca3Al2Si4O14 synthesized by Paque et al. (1994) is thought to be related structurally but with the octahedral site being occupied by Al, that is   相似文献   
24.
Impacts into an icy surface could produce significant amounts of high pressure forms of water ice. Due to the relatively low ambient surface temperatures on satellites in the outer solar system and the modest temperature rises accompanying the impact pressures required for water ice metamorphism, high-pressure polymorphs will be created by and may remain after large cratering events. If so, those high-pressure ices should be ubiquitous. Low-pressure cubic ice may be abundant as well. Impacts into an icy regolith may both produce high-pressure polymorphs from ice I and destroy high-pressure polymorphs already present. The result will be an (unknown) equilibrium concentration of high pressure polymorphs in the regolith. Polymorphs may be detectable and mappable by reflection spectroscopy at vacuum ultraviolet and mid-infrared wavelengths.  相似文献   
25.
Latitudinal heat transport in the ocean and atmosphere represents a fundamental process of the Earth's climate system. The ocean component of heat transport is effected by the thermohaline circulation. Changes in this circulation, and hence latitudinal heat transport, would have a significant effect on global climate. Paleoclimate evidence from the Greenland ice cores and deep sea sediment cores suggests that during much of glacial time the climate system oscillated between two different states. Bimodal equilibrium states of the thermohaline circulation have been demonstrated in climate models. We address the question of the role of the atmospheric hydrological cycle on the global thermohaline circulation and the feedback to the climate system through changes in the ocean's latitudinal heat transport, with a simple coupled ocean-atmosphere energy-salt balance model. Two components of the atmospheric hydrological cycle, i.e., latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean appear to play separate roles. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation or a rapid transition between two different equilibria in the global thermohaline circulation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, the on mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The off mode has strong deep water production in the Southern Ocean and weak production in the North Pacific. Heat transport into the high latitude North Atlantic by the ocean is reduced to about 20% of the on mode value. For estimated values of water vapor transport for the present climate the model asserts that while water vapor transport from the Atlantic to the Pacific Ocean is sufficiently large to make the North Atlantic the dominant region for deep water production, latitudinal water vapor transport is sufficiently low that the thermohaline circulation appears stable, i.e., far from a bifurcation point. This conclusion is supported to some extent by the fact that the high latitude temperature of the atmosphere as recorded in the Greenland ice cores has changed little over the last 9000 years.  相似文献   
26.
The 0.3–2.6 m reflectance spectra of most mafic and ultramafic assemblages can best be interpreted by considering the spectra as being composed of mafic silicate spectra modified by the presence of opaques, such as ilmenite or magnetite, and plagioclase feldspar. The systematic spectral-compositional relationships for olivine, orthopyroxene, and clinopyroxene have been examined and it has been determined that absorption band wavelength positions are correlated with ferrous iron content. Binary mafic silicate mixtures are generally less well understood, but certain spectral features such as reflectance maxima and minima wavelength positions and absorption band areas can be used to quantify or at least constrain end member abundances and compositions. The addition of opaques to a mafic silicate assemblage lowers overall reflectance and band depths. This differs from the effects of increasing grain size which are to lower overall reflectance but increase band depths. Plagioclase is relatively transparent compared to mafic silicates and must be present in appreciable amounts (tens of percent) to be spectrally detectable. The reflectance spectra of most mafic and ultramafic assemblages are dominated by mafic silicate absorption features and analysis of their spectra on this basis allows constraints to be placed on properties such as end member abundances and compositions.  相似文献   
27.
Noble gases in three meteoritic samples were examined by stepwise heating, in an attempt to relate peaks in the outgassing curves to specific minerals: NeKrXe in Allende (C3V) and an Allende residue insoluble in HF-HCl, and Xe in Abee (E4). In Allende, chromite and carbon contain most of the trapped Ne (20Ne/22Ne ≈ 8.7) and anomalous Xe enriched in light and heavy isotopes, and release it at ~850°C (bulk meteorite) or 1000°C (residue). Mineral Q, containing most of the trapped Ar, Kr, Xe as well as some Ne (20Ne/22Ne ≈ 10.4), releases its gases mainly between 1200 and 1600°C, well above the release temperatures of organic polymers (300–500°) or amorphous carbon (800–1000°). The high noble-gas release temperature, ready solubility in oxidizing acids, and correlation with acid-soluble Fe and Cr all point to an inorganic rather than carbonaceous nature of Q.All the radiogenic 129Xe is contained in HCl, HF-soluble minerals, and is distributed as follows over the peaks in the release curve: Attend 1000° (75%), 1300° (25%); Abee (data of Hohenberg and Reynolds, 1969) ~850° (15%), 1100° (60%), 1300° (25%). No conclusive identifications of host phases can yet be given; possible candidates are troilite and silicates for Allende, and djerfisherite, troilite and silicates for Abee.Mineral Q strongly absorbs air xenon, and releases some of it only at 800–1000°C. Dilution by air Xe from Q and other minerals may explain why temperature fractions from bulk meteorites often contain less 124–130Xe for a given enrichment in heavy isotopes than does xenon from etched chromitecarbon samples, although chromite-carbon is the source of the anomalous xenon in either case. Air xenon contamination thus is an important source of error in the derivation of fission xenon spectra.  相似文献   
28.
The primary fractionation process in iron meteorites is that responsible for the distribution of elements between the groups, most notably Ga and Ge, which show concentration ranges of 103 and 104 respectively. To investigate the cause of the primary fractionation, concentrations of 16 elements were converted to relative abundances by dividing the element/Ni ratio by the CI chondrite ratio. These abundances were plotted on logarithmic graphs with data for each group (except IB and IIICD) and each cluster of closely related anomalous irons averaged.Co, P, Au, As, Cu, Sb, Ge and Zn are positively correlated with Ga. For most groups (except IA, IC and IIAB) relative abundances of these elements tend to decrease from about 1 in approximately the order listed above. This is the expected order in which these elements will condense into Fe, Ni during equilibrium nebular condensation. Mean relative abundances of refractory elements in groups generally lie within a narrow range of 0.5–2, and are uncorrelated with Ga. Although the equilibrium model may be only a gross approximation, it suggests that most primary fractionation did occur during nebular condensation.The anomalous irons are essential for defining many of the primary fractionation trends. On several element-Ga graphs the displacements of the anomalous irons from the primary curves indicate that these irons experienced the same secondary fractionation process (probably fractional crystallization) that produced the trends within most groups. The anomalous irons appear to be samples from over 50 minor groups, which have similar histories to the 12 major groups.  相似文献   
29.
The theoretical disk brightness temperature spectra for Uranus are computed and compared with the observed microwave spectrum. It is shown that the emission observed at short centimeter wavelengths originates deep below the region where ammonia would ordinarily begin to condense. We demonstrate that this result is inconsistent with a wide range of atmospheric models in which the partial pressure of NH3 is given by the vapor-pressure equation in the upper atmosphere. It is estimated that the ammonia mixing ratio must be less than 10?6 in the 150 to 200°K temperature range. This is two orders of magnitude less than the expected mixing ratio based on solar abundances. The evidence for this depletion and a possible explanation are discussed.  相似文献   
30.
The intensities of 52 EUV emission lines from each of 9 hedgerow prominences observed at the limb with the Harvard experiment on ATM-Skylab have been compared with intensities from the interior of network cells at the center of the disk, in order to compare the prominence-corona (P-C) interface with the chromosphere-corona (C-C) transition region. The intensity ratio I cell/I prominence for each line varies systematically (in all of the prominences observed), with the temperature of formation of the line as T –0.6. The density sensitive C iii (formed at T 9 × 104 K) line ratio I 1175/I 977 implies an average density 1.3 × 109 electrons cm–3 in the P-C interface and 4 times this value in the C-C transition of the cells. The total optical thickness at the head of the Lyman continuum is 10 in most of the prominences studied; in two of the prominences, however, we cannot reject the possibility that o is large. Methods of analysis of these EUV data are developed assuming both a resolved and an unresolved internal prominence structure. Although the systematic differences between the P-C interface and the C-C transition are stressed, the similarities are probably more remarkable and may be a result of fine structure in the C-C transition.Currently on leave from the Institute of Astronomy, Hawaii; at the Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, 80309.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号