首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   4篇
测绘学   1篇
大气科学   32篇
地球物理   26篇
地质学   37篇
海洋学   7篇
天文学   9篇
自然地理   12篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   13篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   10篇
  2008年   10篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1990年   1篇
  1987年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
21.
Abstract

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0–0.2 m) soil was the EMh/EMv ratio. For the 0–0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R a 2 = 0.66 and MSE = 0.083 dS m-1) as compared to those collected during the same period (R a 2 = 0.97, MSE = 0.007 dS m-1). For similar seasonal conditions, for the DgwEMv relationship, R 2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R 2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R., 2012. Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrological Sciences Journal, 57 (7), 1473–1486.  相似文献   
22.
Agriculture is responsible for 25?C30% of global anthropogenic greenhouse gas (GHG) emissions but has thus far been largely exempted from climate policies. Because of high monitoring costs and comparatively low technical potential for emission reductions in the agricultural sector, output taxes on emission-intensive agricultural goods may be an efficient policy instrument to deal with agricultural GHG emissions. In this study we assess the emission mitigation potential of GHG weighted consumption taxes on animal food products in the EU. We also estimate the decrease in agricultural land area through the related changes in food production and the additional mitigation potential in devoting this land to bioenergy production. Estimates are based on a model of food consumption and the related land use and GHG emissions in the EU. Results indicate that agricultural emissions in the EU27 can be reduced by approximately 32 million tons of CO2-eq with a GHG weighted tax on animal food products corresponding to ?60 per ton CO2-eq. The effect of the tax is estimated to be six times higher if lignocellulosic crops are grown on the land made available and used to substitute for coal in power generation. Most of the effect of a GHG weighted tax on animal food can be captured by taxing the consumption of ruminant meat alone.  相似文献   
23.
Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961–1990) and for two future emission scenarios (2071–2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions.  相似文献   
24.
25.
Responses to recent land-use changes and pollutant loading in the sediment of a hypertrophic lake in southern Sweden were studied by comparison of geochemical, pollen and magnetic records with historical land-use data. A chronology was constructed for the last two centuries by correlating changes in the pollen diagram to major events in the land-use history. Sediment accumulation was low (mean c. 0.2 g cm-2 yr-1) prior to 1800 AD, when less than 25% of the catchment was arable land. Reorganization of the agrarian system during the 19th century increased the annually tilled area by 300%, which accelerated soil erosion and substantially increased the accumulation of allochtonous matter in the lake. Since the turn of the century 90% of the catchment has been ploughed every year. The deposition of clastic matter in the lake has, however, decreased due to a gradual rerouting of the drainage system, which has reduced the effective catchment area by c. 85%.Authigenic vivianite (Fe3(PO4)2.8H2O) is a major P phase in the preindustrial non-sulphidic sediments, which suggests that the sediments at that time served as a fairly efficient sink for P. The arable expansion, increased manuring and, eventually, the introduction of artificial fertilizers during the 19th century led to a massive influx of nutrients, which elevated primary production in the lake. Subsequent development of bottom water anoxia around 1900, in combination with an additional pollutant burden of sulphate within the lake basin, led to major alterations of the biogeochemical cycles. The most critical change in the post-1900 sediments involved the cycling of Fe and P. The linkage between the lacustrine P and Fe cycles can explain that FeS formation was paralleled by a release of P from the sedimentary pool. This supply of P to the lake basin must have supplemented the nutrient supply by modern agriculture and contributed to recent hypertrophication. The bacterial sulphate reduction also affected the generation of alkalinity which supported a significant calcite precipitation in the post-1900 sediments.S is enriched 10-fold in the post-1900 sediments compared to preindustrial values. Along with the rise in S, soot particles derived from fossil fuel combustion appear in the sediments for the first time. Therefore, Bussj¨osj¨on is thought to be a good example of how a well-buffered, highly productive lake may respond to the pollution by sulphur from acid rain.  相似文献   
26.
27.
28.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
29.
Geotechnical and Geological Engineering - Grout curtains are commonly constructed under dams to reduce the seepage through the rock foundation. In the design of grout curtains, empirical methods...  相似文献   
30.
Summary  A mesoscale numerical model, incorporating a land-surface scheme based on Deardorffs’ approach, is used to study the diurnal variation of the boundary layer structure and surface fluxes during four consecutive days with air temperatures well below zero, snow covered ground and changing synoptic forcing. Model results are evaluated against in-situ measurements performed during the WINTEX field campaign held in Sodankyl?, Northern Finland in March 1997. The results show that the land-surface parameterization employed in the mesoscale model is not able to reproduce the magnitude of the daytime sensible heat fluxes and especially the pronounced maximum observed in the afternoon. Additional model simulations indicate that this drawback is to a large extent removed by the implementation of a shading factor in the original Deardorff scheme. The shading factor, as discussed in Gryning et al. (2001), accounts for the fact that in areas with sparse vegetation and low solar angles, both typical for the northern boreal forests in wintertime, absorption of direct solar radiation is due to an apparent vegetation cover which is much greater than the actual one (defined as the portion of the ground covered by vegetation projected vertically). Moreover, the observed asymmetry in the diurnal variation of the sensible heat flux indicates that there might be a significant heat storage in the vegetation. The implementation of an objective heat storage scheme in the mesoscale model explains part of the observed diurnal variation of the sensible heat flux. Received November 12, 1999 Revised October 4, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号