首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   6篇
  国内免费   1篇
测绘学   1篇
大气科学   12篇
地球物理   24篇
地质学   20篇
海洋学   10篇
天文学   32篇
综合类   1篇
自然地理   4篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   12篇
  2008年   8篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
101.
The study is focusing on the stress and strain inversions from focal mechanisms in a revised seismotectonic zonation of northeastern Italy and western Slovenia. The recent increase of monitoring capability of the local seismic network, the updated geological-structural model of the area, and the novelties emerged from studies on the spatial organization of the seismicity allowed a redefinition of the seismotectonic zones. The stress and strain tensors inversion is inferred from 203 focal mechanisms, corresponding to earthquakes occurred between 1984 and 2016 with coda-duration magnitude range from 2.0 to 5.6. The inverted stress domains reveal an articulated picture of the interaction of the Adria microplate with the Eurasian plate. A dominant strike-slip stress field characterizes the eastern part of the area, while the seismotectonic zones of the central part are undergoing to thrusting regime. The stress pattern inferred in the western part of the study area outlines a complex picture with prevailing strike-slip regime and dominant compression only in a seismotectonic zone. The comparison of stress and strain tensor orientations evidences a relative uniformity of the crustal strength in the eastern and northwestern zones of the study area. The central and western zones appear to be characterized by planes of mechanical weakness not favorably oriented for failure with respect to the stress tensor.  相似文献   
102.
A wide number of experimental studies conducted in latest years pointed out the high influence of the mechanical properties of masonry units and mortar bed joints on lateral strength and stiffness of masonry panels. This feature significantly modifies the global response of infilled frames under seismic actions as well as the local interaction phenomena. Despite a wide investigation on the influence of the infills on global behaviour of reinforced concrete (RC) frames has already been provided, different features characterizing the seismic performances of buildings suggest the need of accurately evaluating local interaction phenomena as well as the influence of the panel on specific and relevant aspects, as the accelerations transferred to non-structural components. This study provides a parametrical analysis of the influence of shear strength and elastic modulus of masonry infills on the seismic behaviour of RC frames originally designed for gravity loads. Regular buildings with different height were analysed using the Incremental Dynamic Analysis in order to provide fragility curves, investigate on the collapse mechanisms and define the floor spectra depending on the properties of the infills. Results obtained pointed out the high influence of the considered parameters on the fragility of existing RC frames, often characterized by inadequate transversal reinforcement of columns, which may lead to brittle failure due to the interaction with the infills. Floor response spectra are also significantly affected by the influence of masonry infills both in terms of shape and maximum spectral accelerations. Lastly, on the basis of the observed failure mechanisms, a parameter defining the ductility of the frames depending on the properties of the infills was also provided (Capacity Design Factor). The correlation between the mechanical properties of the infills and this parameter suggests its reliability in the simplified vulnerability analysis of existing buildings as well as for the design of new buildings.  相似文献   
103.
Physical properties of alluvial environments typically feature a high degree of anisotropy and are characterized by dynamic interactions between the surface and the subsurface. Hydrogeological models are often calibrated under the assumptions of isotropic hydraulic conductivity fields and steady-state conditions. We aim at understanding how these simplifications affect predictions of the water table using physically based models and advanced calibration and uncertainty analysis approaches based on singular value decomposition and Bayesian analysis. Specifically, we present an analysis of the information content provided by steady-state hydraulic data compared to transient data with respect to the estimation of aquifer and riverbed hydraulic properties. We show that assuming isotropy or fixed anisotropy may generate biases both in the estimation of aquifer and riverbed parameters as well as in the predictive uncertainty of the water table. We further demonstrate that the information content provided by steady-state hydraulic heads is insufficient to jointly estimate the aquifer anisotropy together with the aquifer and riverbed hydraulic conductivities and that transient data can help to reduce the predictive uncertainty to a greater extent. The outcomes of the synthetic analysis are applied to the calibration of a dynamic and anisotropic alluvial aquifer in Switzerland (The Rhône River). The results of the synthetic and real world modeling and calibration exercises documented herein provide insight on future data acquisition as well as modeling and calibration strategies for these environments. They also provide an incentive for evaluation and estimation of commonly made simplifying assumptions in order to prevent underestimation of the predictive uncertainty.  相似文献   
104.
The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed geological mapping,stratigraphic and structural analyses,we document that the continental break-up of Pangea and tectonic dismemberment of the Adria distal margin,up to mantle rocks exhumation and oceanization,did not simply result from the syn-rift Jurassic extension but was strongly favored by older structu ral inheritances(the Proto-Canavese Shear Zone),which controlled earlier lithospheric weakness.Our findings allowed to redefine in detail(i)the tectono-stratigraphic setting of the Variscan metamorphic basement and the Late Carbonife rous to Early Cretaceous CZ succession,(ii)the role played by inherited Late Carboniferous to Early Triassic structures and(iii)the significance of the CZ in the geodynamic evolution of the Alpine Tethys.The large amount of extensional displacement and crustal thinning occurred during different pulses of Late Carbonife rous-Early Triassic strike-slip tectonics is wellconsistent with the role played by long-lived regional-scale wrench faults(e.g.,the East-Variscan Shear Zone),suggesting a re-discussion of models of mantle exhumation driven by low-angle detachment faults as unique efficient mechanism in stretching and thinning continental crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号